Skip to content

model

RleEncoder

Bases: json.JSONEncoder

Custom encoder to convert numpy arrays to RLE.

default(o)

Customize standard encoder behaviour to convert numpy arrays to RLE.

Source code in quadra/utils/patch/model.py
148
149
150
151
152
def default(self, o: Any):
    """Customize standard encoder behaviour to convert numpy arrays to RLE."""
    if isinstance(o, np.ndarray):
        return mask2rle(o)
    return json.JSONEncoder.default(self, o)

save_classification_result(results, output_folder, confusion_matrix, accuracy, test_dataloader, reconstructions, config, output, ignore_classes=None)

Save classification results.

Parameters:

  • results (pd.DataFrame) –

    Dataframe containing the classification results

  • output_folder (str) –

    Folder where to save the results

  • confusion_matrix (Optional[pd.DataFrame]) –

    Confusion matrix

  • accuracy (float) –

    Accuracy of the model

  • test_dataloader (DataLoader) –

    Dataloader used for testing

  • reconstructions (List[Dict]) –

    List of dictionaries containing polygons or masks

  • config (DictConfig) –

    Experiment configuration

  • output (DictConfig) –

    Output configuration

  • ignore_classes (Optional[List[int]]) –

    Eventual classes to ignore during reconstruction plot. Defaults to None.

Source code in quadra/utils/patch/model.py
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def save_classification_result(
    results: pd.DataFrame,
    output_folder: str,
    confusion_matrix: Optional[pd.DataFrame],
    accuracy: float,
    test_dataloader: DataLoader,
    reconstructions: List[Dict],
    config: DictConfig,
    output: DictConfig,
    ignore_classes: Optional[List[int]] = None,
):
    """Save classification results.

    Args:
        results: Dataframe containing the classification results
        output_folder: Folder where to save the results
        confusion_matrix: Confusion matrix
        accuracy: Accuracy of the model
        test_dataloader: Dataloader used for testing
        reconstructions: List of dictionaries containing polygons or masks
        config: Experiment configuration
        output: Output configuration
        ignore_classes: Eventual classes to ignore during reconstruction plot. Defaults to None.
    """
    # Save csv
    results.to_csv(os.path.join(output_folder, "test_results.csv"), index_label="index")

    if confusion_matrix is not None:
        # Save confusion matrix
        disp = ConfusionMatrixDisplay(
            confusion_matrix=np.array(confusion_matrix),
            display_labels=[x.replace("pred:", "") for x in confusion_matrix.columns.to_list()],
        )
        disp.plot(include_values=True, cmap=plt.cm.Greens, ax=None, colorbar=False, xticks_rotation=90)
        plt.title(f"Confusion Matrix (Accuracy: {(accuracy * 100):.2f}%)")
        plt.savefig(
            os.path.join(output_folder, "test_confusion_matrix.png"),
            bbox_inches="tight",
            pad_inches=0,
            dpi=300,
        )
        plt.close()

    if output.example:
        if not hasattr(test_dataloader.dataset, "idx_to_class"):
            raise ValueError("The provided dataset does not have an attribute 'idx_to_class")

        idx_to_class = test_dataloader.dataset.idx_to_class

        # Get misclassified samples
        example_folder = os.path.join(output_folder, "example")
        if not os.path.isdir(example_folder):
            os.makedirs(example_folder)

        # Skip if no no ground truth is available
        if not all(results["real_label"] == -1):
            for v in np.unique([results["real_label"], results["pred_label"]]):
                if v == -1:
                    continue

                k = idx_to_class[v]

                if ignore_classes is not None and v in ignore_classes:
                    continue

                plot_classification_results(
                    test_dataloader.dataset,
                    unorm=UnNormalize(mean=config.transforms.mean, std=config.transforms.std),
                    pred_labels=results["pred_label"].to_numpy(),
                    test_labels=results["real_label"].to_numpy(),
                    class_name=k,
                    original_folder=example_folder,
                    idx_to_class=idx_to_class,
                    pred_class_to_plot=v,
                    what="con",
                    rows=output.get("rows", 3),
                    cols=output.get("cols", 2),
                    figsize=output.get("figsize", (20, 20)),
                )

                plot_classification_results(
                    test_dataloader.dataset,
                    unorm=UnNormalize(mean=config.transforms.mean, std=config.transforms.std),
                    pred_labels=results["pred_label"].to_numpy(),
                    test_labels=results["real_label"].to_numpy(),
                    class_name=k,
                    original_folder=example_folder,
                    idx_to_class=idx_to_class,
                    pred_class_to_plot=v,
                    what="dis",
                    rows=output.get("rows", 3),
                    cols=output.get("cols", 2),
                    figsize=output.get("figsize", (20, 20)),
                )

        for counter, reconstruction in enumerate(reconstructions):
            is_polygon = True
            if isinstance(reconstruction["prediction"], np.ndarray):
                is_polygon = False

            if is_polygon:
                if len(reconstruction["prediction"]) == 0:
                    continue
            else:
                if reconstruction["prediction"].sum() == 0:
                    continue

            if counter > 5:
                break

            to_plot = plot_patch_reconstruction(
                reconstruction,
                idx_to_class,
                class_to_idx=test_dataloader.dataset.class_to_idx,  # type: ignore[attr-defined]
                ignore_classes=ignore_classes,
                is_polygon=is_polygon,
            )

            if to_plot:
                output_name = f"reconstruction_{os.path.splitext(os.path.basename(reconstruction['file_name']))[0]}.png"
                plt.savefig(os.path.join(example_folder, output_name), bbox_inches="tight", pad_inches=0)

            plt.close()