mlflow
LogGradients(norm=2, tag=None, sep='/', round_to=3, log_all_grads=False)
¶
Bases: Callback
Callback used to logs of the model at the end of the of each training step.
Parameters:
-
norm
(
int
) –Norm to use for the gradient. Default is L2 norm.
-
tag
(
Optional[str]
) –Tag to add to the gradients. If None, no tag will be added.
-
sep
(
str
) –Separator to use in the log.
-
round_to
(
int
) –Number of decimals to round the gradients to.
-
log_all_grads
(
bool
) –If True, log all gradients, not just the total norm.
Source code in quadra/callbacks/mlflow.py
123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx, unused=0)
¶
Method called at the end of the train batch
Parameters:
-
trainer
(
Trainer
) –pl.trainer
-
pl_module
(
LightningModule
) –lightning module
-
outputs
(
STEP_OUTPUT
) –outputs
-
batch
(
Any
) –batch
-
batch_idx
(
int
) –index
-
unused
(
Optional[int]
) –dl index.
Returns:
-
None
–None
Source code in quadra/callbacks/mlflow.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
LogLearningRate(logging_interval=None, log_momentum=False)
¶
Bases: LearningRateMonitor
Learning rate logger at the end of the training step/epoch.
Parameters:
-
logging_interval
(
Optional[str]
) –Logging interval.
-
log_momentum
(
bool
) –If True, log momentum as well.
Source code in quadra/callbacks/mlflow.py
262 263 |
|
on_train_batch_start(trainer, *args, **kwargs)
¶
Log learning rate at the beginning of the training step if logging interval is set to step.
Source code in quadra/callbacks/mlflow.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
on_train_epoch_start(trainer, *args, **kwargs)
¶
Log learning rate at the beginning of the epoch if logging interval is set to epoch.
Source code in quadra/callbacks/mlflow.py
281 282 283 284 285 286 287 288 289 290 291 292 |
|
UploadCheckpointsAsArtifact(ckpt_dir='checkpoints/', ckpt_ext='ckpt', upload_best_only=False, delete_after_upload=True, upload=True)
¶
Bases: Callback
Callback used to upload checkpoints as artifacts.
Parameters:
-
ckpt_dir
(
str
) –Folder where all the checkpoints are stored in artifact folder.
-
ckpt_ext
(
str
) –Extension of checkpoint files (default: ckpt).
-
upload_best_only
(
bool
) –Only upload best checkpoint (default: False)
-
delete_after_upload
(
bool
) –Delete the checkpoint from local storage after uploading (default: True)
-
upload
(
bool
) –If True, upload the checkpoints. If False, only save them on local machine.
Source code in quadra/callbacks/mlflow.py
201 202 203 204 205 206 207 208 209 210 211 212 213 |
|
on_test_end(trainer, pl_module)
¶
Triggered at the end of test. Uploads all model checkpoints to mlflow as an artifact.
Parameters:
-
trainer
(
Trainer
) –Pytorch Lightning trainer.
-
pl_module
(
LightningModule
) –Pytorch Lightning module.
Source code in quadra/callbacks/mlflow.py
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
UploadCodeAsArtifact(source_dir)
¶
Bases: Callback
Callback used to upload Code as artifact.
Uploads all *.py files to mlflow as an artifact, at the beginning of the run but after initializing the trainer. It creates project-source folder under mlflow artifacts and other necessary subfolders.
Parameters:
-
source_dir
(
str
) –Folder where all the source files are stored.
Source code in quadra/callbacks/mlflow.py
81 82 |
|
on_test_end(trainer, pl_module)
¶
Triggered at the end of test. Uploads all *.py files to mlflow as an artifact.
Parameters:
-
trainer
(
Trainer
) –Pytorch Lightning trainer.
-
pl_module
(
LightningModule
) –Pytorch Lightning module.
Source code in quadra/callbacks/mlflow.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
check_file_server_dependencies()
¶
Check file dependencies as boto3.
Returns:
-
None
–None
Source code in quadra/callbacks/mlflow.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
check_minio_credentials()
¶
Check minio credentials for aws based storage such as minio.
Returns:
-
None
–None
Source code in quadra/callbacks/mlflow.py
15 16 17 18 19 20 21 22 23 24 25 26 |
|
validate_artifact_storage(logger)
¶
Validate artifact storage.
Parameters:
-
logger
(
MLFlowLogger
) –Mlflow logger from pytorch lightning.
Source code in quadra/callbacks/mlflow.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|