focal
BinaryFocalLossWithLogits(alpha, gamma=2.0, reduction='none')
¶
Bases: Module
Criterion that computes Focal loss.
According to :cite:lin2018focal
, the Focal loss is computed as follows:
.. math::
\text{FL}(p_t) = -\alpha_t (1 - p_t)^{\gamma} \, \text{log}(p_t)
where
- :math:
p_t
is the model's estimated probability for each class.
Parameters:
-
alpha
(
float
) –Weighting factor for the rare class :math:
\alpha \in [0, 1]
. -
gamma
(
float
, default:2.0
) –Focusing parameter :math:
\gamma >= 0
. -
reduction
(
str
, default:'none'
) –Specifies the reduction to apply to the output:
'none'
|'mean'
|'sum'
.'none'
: no reduction will be applied,'mean'
: the sum of the output will be divided by the number of elements in the output,'sum'
: the output will be summed.
Shape
- Input: :math:
(N, *)
. - Target: :math:
(N, *)
.
Examples:
>>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'}
>>> loss = BinaryFocalLossWithLogits(**kwargs)
>>> input = torch.randn(1, 3, 5, requires_grad=True)
>>> target = torch.empty(1, 3, 5, dtype=torch.long).random_(2)
>>> output = loss(input, target)
>>> output.backward()
Source code in quadra/losses/classification/focal.py
311 312 313 314 315 |
|
forward(input_tensor, target)
¶
Forward call computation.
Source code in quadra/losses/classification/focal.py
317 318 319 |
|
FocalLoss(alpha, gamma=2.0, reduction='none', eps=None)
¶
Bases: Module
Criterion that computes Focal loss.
According to :cite:lin2018focal
, the Focal loss is computed as follows:
.. math::
\text{FL}(p_t) = -\alpha_t (1 - p_t)^{\gamma} \, \text{log}(p_t)
Where
- :math:
p_t
is the model's estimated probability for each class.
Parameters:
-
alpha
(
float
) –Weighting factor :math:
\alpha \in [0, 1]
. -
gamma
(
float
, default:2.0
) –Focusing parameter :math:
\gamma >= 0
. -
reduction
(
str
, default:'none'
) –Specifies the reduction to apply to the output:
'none'
|'mean'
|'sum'
.'none'
: no reduction will be applied,'mean'
: the sum of the output will be divided by the number of elements in the output,'sum'
: the output will be summed. -
eps
(
Optional[float]
, default:None
) –used.
Shape
- Input: :math:
(N, C, *)
where C = number of classes. - Target: :math:
(N, *)
where each value is :math:0 ≤ targets[i] ≤ C−1
.
Example
N = 5 # num_classes kwargs = {"alpha": 0.5, "gamma": 2.0, "reduction": 'mean'} criterion = FocalLoss(**kwargs) input = torch.randn(1, N, 3, 5, requires_grad=True) target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) output = criterion(input, target) output.backward()
Source code in quadra/losses/classification/focal.py
190 191 192 193 194 195 |
|
forward(input_tensor, target)
¶
Forward call computation.
Source code in quadra/losses/classification/focal.py
197 198 199 |
|
binary_focal_loss_with_logits(input_tensor, target, alpha=0.25, gamma=2.0, reduction='none', eps=None)
¶
Function that computes Binary Focal loss.
.. math::
\text{FL}(p_t) = -\alpha_t (1 - p_t)^{\gamma} \, \text{log}(p_t)
where
- :math:
p_t
is the model's estimated probability for each class.
Parameters:
-
input_tensor
(
Tensor
) –input data tensor of arbitrary shape.
-
target
(
Tensor
) –the target tensor with shape matching input.
-
alpha
(
float
, default:0.25
) –Weighting factor for the rare class :math:
\alpha \in [0, 1]
. -
gamma
(
float
, default:2.0
) –Focusing parameter :math:
\gamma >= 0
. -
reduction
(
str
, default:'none'
) –Specifies the reduction to apply to the output:
'none'
|'mean'
|'sum'
.'none'
: no reduction will be applied,'mean'
: the sum of the output will be divided by the number of elements in the output,'sum'
: the output will be summed. -
eps
(
Optional[float]
, default:None
) –
Returns:
-
Tensor
–the computed loss.
Examples:
>>> kwargs = {"alpha": 0.25, "gamma": 2.0, "reduction": 'mean'}
>>> logits = torch.tensor([[[6.325]],[[5.26]],[[87.49]]])
>>> labels = torch.tensor([[[1.]],[[1.]],[[0.]]])
>>> binary_focal_loss_with_logits(logits, labels, **kwargs)
tensor(21.8725)
Source code in quadra/losses/classification/focal.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
|
focal_loss(input_tensor, target, alpha, gamma=2.0, reduction='none', eps=None)
¶
Criterion that computes Focal loss.
According to :cite:lin2018focal
, the Focal loss is computed as follows:
.. math::
\text{FL}(p_t) = -\alpha_t (1 - p_t)^{\gamma} \, \text{log}(p_t)
Where
- :math:
p_t
is the model's estimated probability for each class.
Parameters:
-
input_tensor
(
Tensor
) –Logits tensor with shape :math:
(N, C, *)
where C = number of classes. -
target
(
Tensor
) –Labels tensor with shape :math:
(N, *)
where each value is :math:0 ≤ targets[i] ≤ C−1
. -
alpha
(
float
) –Weighting factor :math:
\alpha \in [0, 1]
. -
gamma
(
float
, default:2.0
) –Focusing parameter :math:
\gamma >= 0
. -
reduction
(
str
, default:'none'
) –Specifies the reduction to apply to the output:
'none'
|'mean'
|'sum'
.'none'
: no reduction will be applied,'mean'
: the sum of the output will be divided by the number of elements in the output,'sum'
: the output will be summed. -
eps
(
Optional[float]
, default:None
) –
Returns:
-
Tensor
–The computed loss.
Example
N = 5 # num_classes input = torch.randn(1, N, 3, 5, requires_grad=True) target = torch.empty(1, 3, 5, dtype=torch.long).random_(N) output = focal_loss(input, target, alpha=0.5, gamma=2.0, reduction='mean') output.backward()
Source code in quadra/losses/classification/focal.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
one_hot(labels, num_classes, device=None, dtype=None, eps=1e-06)
¶
Convert an integer label x-D tensor to a one-hot (x+1)-D tensor.
Parameters:
-
labels
(
Tensor
) –tensor with labels of shape :math:
(N, *)
, where N is batch size. Each value is an integer representing correct classification. -
num_classes
(
int
) –number of classes in labels.
-
device
(
Optional[device]
, default:None
) –the desired device of returned tensor.
-
dtype
(
Optional[dtype]
, default:None
) –the desired data type of returned tensor.
-
eps
(
float
, default:1e-06
) –a value added to the returned tensor.
Returns:
-
Tensor
–the labels in one hot tensor of shape :math:
(N, C, *)
,
Examples:
>>> labels = torch.LongTensor([[[0, 1], [2, 0]]])
>>> one_hot(labels, num_classes=3)
tensor([[[[1.0000e+00, 1.0000e-06],
[1.0000e-06, 1.0000e+00]],
[[1.0000e-06, 1.0000e+00],
[1.0000e-06, 1.0000e-06]],
[[1.0000e-06, 1.0000e-06],
[1.0000e+00, 1.0000e-06]]]])
Source code in quadra/losses/classification/focal.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|