Skip to content

classification

Classification(config, output, checkpoint_path=None, lr_multiplier=None, gradcam=False, report=False, run_test=False)

Bases: Generic[ClassificationDataModuleT], LightningTask[ClassificationDataModuleT]

Classification Task.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • output (DictConfig) –

    The otuput configuration.

  • gradcam (bool, default: False ) –

    Whether to compute gradcams

  • checkpoint_path (Optional[str], default: None ) –

    The path to the checkpoint to load the model from. Defaults to None.

  • lr_multiplier (Optional[float], default: None ) –

    The multiplier for the backbone learning rate. Defaults to None.

  • output (DictConfig) –

    The ouput configuration (under task config). It contains the bool "example" to generate figs of discordant/concordant predictions.

  • report (bool, default: False ) –

    Whether to generate a report containing the results after test phase

  • run_test (bool, default: False ) –

    Whether to run the test phase.

Source code in quadra/tasks/classification.py
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    checkpoint_path: Optional[str] = None,
    lr_multiplier: Optional[float] = None,
    gradcam: bool = False,
    report: bool = False,
    run_test: bool = False,
):
    super().__init__(
        config=config,
        checkpoint_path=checkpoint_path,
        run_test=run_test,
        report=report,
    )
    self.output = output
    self.gradcam = gradcam
    self._lr_multiplier = lr_multiplier
    self._pre_classifier: nn.Module
    self._classifier: nn.Module
    self._model: nn.Module
    self._optimizer: torch.optim.Optimizer
    self._scheduler: torch.optim.lr_scheduler._LRScheduler
    self.model_json: Optional[Dict[str, Any]] = None
    self.export_folder: str = "deployment_model"
    self.deploy_info_file: str = "model.json"
    self.report_confmat: pd.DataFrame

len_train_dataloader: int property

Get the length of the train dataloader.

optimizer: torch.optim.Optimizer property writable

Get the optimizer.

scheduler: torch.optim.lr_scheduler._LRScheduler property writable

Get the scheduler.

export()

Generate deployment models for the task.

Source code in quadra/tasks/classification.py
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
def export(self) -> None:
    """Generate deployment models for the task."""
    if self.datamodule.class_to_idx is None:
        log.warning(
            "No `class_to_idx` found in the datamodule, class information will not be saved in the model.json"
        )
        idx_to_class = {}
    else:
        idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    if self.trainer.checkpoint_callback is None:
        log.warning("No checkpoint callback found in the trainer, exporting the last model weights")
    else:
        best_model_path = self.trainer.checkpoint_callback.best_model_path  # type: ignore[attr-defined]
        log.info("Saving deployment model for %s checkpoint", best_model_path)

        module = self.module.load_from_checkpoint(
            best_model_path,
            model=self.module.model,
            optimizer=self.optimizer,
            lr_scheduler=self.scheduler,
            criterion=self.module.criterion,
            gradcam=False,
        )

    input_shapes = self.config.export.input_shapes

    # TODO: What happens if we have 64 precision?
    half_precision = "16" in self.trainer.precision

    self.model_json, export_paths = export_model(
        config=self.config,
        model=module.model,
        export_folder=self.export_folder,
        half_precision=half_precision,
        input_shapes=input_shapes,
        idx_to_class=idx_to_class,
    )

    if len(export_paths) == 0:
        return

    with open(os.path.join(self.export_folder, self.deploy_info_file), "w") as f:
        json.dump(self.model_json, f)

freeze_layers(freeze_parameters_name)

Freeze layers specified in freeze_parameters_name.

Parameters:

  • freeze_parameters_name (List[str]) –

    Layers that will be frozen during training.

Source code in quadra/tasks/classification.py
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
def freeze_layers(self, freeze_parameters_name: List[str]):
    """Freeze layers specified in freeze_parameters_name.

    Args:
        freeze_parameters_name: Layers that will be frozen during training.

    """
    count_frozen = 0
    for name, param in self.model.named_parameters():
        if any(x in name.split(".")[1] for x in freeze_parameters_name):
            log.debug("Freezing layer %s", name)
            param.requires_grad = False

        if not param.requires_grad:
            count_frozen += 1

    log.info("Frozen %d parameters", count_frozen)

generate_report()

Generate a report for the task.

Source code in quadra/tasks/classification.py
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
def generate_report(self) -> None:
    """Generate a report for the task."""
    if self.datamodule.class_to_idx is None:
        log.warning("No `class_to_idx` found in the datamodule, report will not be generated")
        return

    if isinstance(self.datamodule, MultilabelClassificationDataModule):
        log.warning("Report generation is not supported for multilabel classification tasks at the moment.")
        return

    log.info("Generating report!")
    if not self.run_test or self.config.trainer.get("fast_dev_run"):
        self.datamodule.setup(stage="test")
    best_model_path = self.trainer.checkpoint_callback.best_model_path  # type: ignore[union-attr]
    predictions_outputs = self.trainer.predict(
        model=self.module, datamodule=self.datamodule, ckpt_path=best_model_path
    )
    if not predictions_outputs:
        log.warning("There is no prediction to generate the report. Skipping report generation.")
        return
    all_outputs = [x[0] for x in predictions_outputs]
    if not all_outputs:
        log.warning("There is no prediction to generate the report. Skipping report generation.")
        return
    all_outputs = [item for sublist in all_outputs for item in sublist]
    all_targets = [target.tolist() for im, target in self.datamodule.test_dataloader()]
    all_targets = [item for sublist in all_targets for item in sublist]

    if self.module.gradcam:
        grayscale_cams = [x[1] for x in predictions_outputs]
        grayscale_cams = [item for sublist in grayscale_cams for item in sublist]
        grayscale_cams = np.stack(grayscale_cams)  # N x H x W
    else:
        grayscale_cams = None

    # creating confusion matrix
    idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}
    _, self.report_confmat, accuracy = get_results(
        test_labels=all_targets,
        pred_labels=all_outputs,
        idx_to_labels=idx_to_class,
    )
    output_folder_test = "test"
    test_dataloader = self.datamodule.test_dataloader()
    test_dataset = cast(ImageClassificationListDataset, test_dataloader.dataset)
    res = pd.DataFrame(
        {
            "sample": list(test_dataset.x),
            "real_label": all_targets,
            "pred_label": all_outputs,
        }
    )
    os.makedirs(output_folder_test, exist_ok=True)
    save_classification_result(
        results=res,
        output_folder=output_folder_test,
        confmat=self.report_confmat,
        accuracy=accuracy,
        test_dataloader=self.datamodule.test_dataloader(),
        config=self.config,
        output=self.output,
        grayscale_cams=grayscale_cams,
    )

    if len(self.logger) > 0:
        mflow_logger = get_mlflow_logger(trainer=self.trainer)
        tensorboard_logger = utils.get_tensorboard_logger(trainer=self.trainer)
        artifacts = glob.glob(os.path.join(output_folder_test, "**/*"), recursive=True)
        if self.config.core.get("upload_artifacts") and len(artifacts) > 0:
            if mflow_logger is not None:
                log.info("Uploading artifacts to MLFlow")
                for a in artifacts:
                    if os.path.isdir(a):
                        continue

                    dirname = Path(a).parent.name
                    mflow_logger.experiment.log_artifact(
                        run_id=mflow_logger.run_id,
                        local_path=a,
                        artifact_path=os.path.join("classification_output", dirname),
                    )
            if tensorboard_logger is not None:
                log.info("Uploading artifacts to Tensorboard")
                for a in artifacts:
                    if os.path.isdir(a):
                        continue

                    ext = os.path.splitext(a)[1].lower()

                    if ext in [".png", ".jpg", ".jpeg", ".bmp", ".tiff", ".tif", ".gif"]:
                        try:
                            img = cv2.imread(a)
                            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                        except cv2.error:
                            log.info("Could not upload artifact image %s", a)
                            continue
                        output_path = os.path.sep.join(a.split(os.path.sep)[-2:])
                        tensorboard_logger.experiment.add_image(output_path, img, 0, dataformats="HWC")
                    else:
                        utils.upload_file_tensorboard(a, tensorboard_logger)

module(module_config)

Set the module of the model.

Source code in quadra/tasks/classification.py
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
@LightningTask.module.setter
def module(self, module_config):
    """Set the module of the model."""
    module = hydra.utils.instantiate(
        module_config,
        model=self.model,
        optimizer=self.optimizer,
        lr_scheduler=self.scheduler,
        gradcam=self.gradcam,
    )
    if self.checkpoint_path is not None:
        log.info("Loading model from lightning checkpoint: %s", self.checkpoint_path)
        module = module.load_from_checkpoint(
            self.checkpoint_path,
            model=self.model,
            optimizer=self.optimizer,
            lr_scheduler=self.scheduler,
            criterion=module.criterion,
            gradcam=self.gradcam,
        )
    self._module = module

prepare()

Prepare the experiment.

Source code in quadra/tasks/classification.py
230
231
232
233
234
235
236
def prepare(self) -> None:
    """Prepare the experiment."""
    super().prepare()
    self.model = self.config.model
    self.optimizer = self.config.optimizer
    self.scheduler = self.config.scheduler
    self.module = self.config.model.module

test()

Test the model.

Source code in quadra/tasks/classification.py
238
239
240
241
242
243
244
245
246
def test(self) -> None:
    """Test the model."""
    if not self.config.trainer.get("fast_dev_run"):
        if self.trainer.checkpoint_callback is None:
            raise ValueError("Checkpoint callback is not defined!")
        log.info("Starting testing!")
        self.datamodule.setup(stage="test")
        log.info("Using best epoch's weights for testing.")
        self.trainer.test(datamodule=self.datamodule, model=self.module, ckpt_path="best")

ClassificationEvaluation(config, output, model_path, report=True, gradcam=False, device=None)

Bases: Evaluation[ClassificationDataModuleT]

Perform a test on an imported Classification pytorch model.

Parameters:

  • config (DictConfig) –

    Task configuration

  • output (DictConfig) –

    Configuration for the output

  • model_path (str) –

    Path to pytorch .pt model file

  • report (bool, default: True ) –

    Whether to generate the report of the predictions

  • gradcam (bool, default: False ) –

    Whether to compute gradcams

  • device (Optional[str], default: None ) –

    Device to use for evaluation. If None, the device is automatically determined

Source code in quadra/tasks/classification.py
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    model_path: str,
    report: bool = True,
    gradcam: bool = False,
    device: Optional[str] = None,
):
    super().__init__(config=config, model_path=model_path, device=device)
    self.report_path = "test_output"
    self.output = output
    self.report = report
    self.gradcam = gradcam
    self.cam: GradCAM

deployment_model: BaseEvaluationModel property writable

Deployment model.

execute()

Execute the evaluation.

Source code in quadra/tasks/classification.py
1114
1115
1116
1117
1118
1119
1120
def execute(self) -> None:
    """Execute the evaluation."""
    self.prepare()
    self.test()
    if self.report:
        self.generate_report()
    self.finalize()

generate_report()

Generate a report for the task.

Source code in quadra/tasks/classification.py
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
def generate_report(self) -> None:
    """Generate a report for the task."""
    log.info("Generating report!")
    os.makedirs(self.report_path, exist_ok=True)

    save_classification_result(
        results=self.metadata["test_results"],
        output_folder=self.report_path,
        confmat=self.metadata["test_confusion_matrix"],
        accuracy=self.metadata["test_accuracy"],
        test_dataloader=self.datamodule.test_dataloader(),
        config=self.config,
        output=self.output,
        grayscale_cams=self.metadata["grayscale_cams"],
    )

get_classifier(model_config)

Instantiate the classifier from the config.

Source code in quadra/tasks/classification.py
928
929
930
931
932
933
934
935
936
def get_classifier(self, model_config: DictConfig) -> nn.Module:
    """Instantiate the classifier from the config."""
    if "classifier" in model_config:
        log.info("Instantiating classifier <%s>", model_config.classifier["_target_"])
        return hydra.utils.instantiate(
            model_config.classifier, out_features=self.datamodule.num_classes, _convert_="partial"
        )

    raise ValueError("A `classifier` definition must be specified in the config")

get_pre_classifier(model_config)

Instantiate the pre-classifier from the config.

Source code in quadra/tasks/classification.py
917
918
919
920
921
922
923
924
925
926
def get_pre_classifier(self, model_config: DictConfig) -> nn.Module:
    """Instantiate the pre-classifier from the config."""
    if "pre_classifier" in model_config and model_config.pre_classifier is not None:
        log.info("Instantiating pre_classifier <%s>", model_config.pre_classifier["_target_"])
        pre_classifier = hydra.utils.instantiate(model_config.pre_classifier, _convert_="partial")
    else:
        log.info("No pre-classifier found in config: instantiate a torch.nn.Identity instead")
        pre_classifier = nn.Identity()

    return pre_classifier

get_torch_model(model_config)

Instantiate the torch model from the config.

Source code in quadra/tasks/classification.py
907
908
909
910
911
912
913
914
915
def get_torch_model(self, model_config: DictConfig) -> nn.Module:
    """Instantiate the torch model from the config."""
    pre_classifier = self.get_pre_classifier(model_config)
    classifier = self.get_classifier(model_config)
    log.info("Instantiating backbone <%s>", model_config.model["_target_"])

    return hydra.utils.instantiate(
        model_config.model, classifier=classifier, pre_classifier=pre_classifier, _convert_="partial"
    )

prepare()

Prepare the evaluation.

Source code in quadra/tasks/classification.py
974
975
976
977
def prepare(self) -> None:
    """Prepare the evaluation."""
    self.datamodule = self.config.datamodule
    super().prepare()

prepare_gradcam()

Initializing gradcam for the predictions.

Source code in quadra/tasks/classification.py
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
def prepare_gradcam(self) -> None:
    """Initializing gradcam for the predictions."""
    if not hasattr(self.deployment_model.model, "features_extractor"):
        log.warning("Gradcam not implemented for this backbone, it will not be computed")
        self.gradcam = False
        return

    if isinstance(self.deployment_model.model.features_extractor, timm.models.resnet.ResNet):
        target_layers = [
            cast(BaseNetworkBuilder, self.deployment_model.model).features_extractor.layer4[
                -1
            ]  # type: ignore[index]
        ]
        self.cam = GradCAM(
            model=self.deployment_model.model,
            target_layers=target_layers,
            use_cuda=(self.device != "cpu"),
        )
        for p in self.deployment_model.model.features_extractor.layer4[-1].parameters():
            p.requires_grad = True
    elif is_vision_transformer(cast(BaseNetworkBuilder, self.deployment_model.model).features_extractor):
        self.grad_rollout = VitAttentionGradRollout(cast(nn.Module, self.deployment_model.model))
    else:
        log.warning("Gradcam not implemented for this backbone, it will not be computed")
        self.gradcam = False

test()

Perform test.

Source code in quadra/tasks/classification.py
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
def test(self) -> None:
    """Perform test."""
    log.info("Running test")
    # prepare_data() must be explicitly called because there is no training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="test")
    test_dataloader = self.datamodule.test_dataloader()

    image_labels = []
    probabilities = []
    predicted_classes = []
    grayscale_cams_list = []

    if self.gradcam:
        self.prepare_gradcam()

    with torch.set_grad_enabled(self.gradcam):
        for batch_item in tqdm(test_dataloader):
            im, target = batch_item
            im = im.to(self.device).detach()

            if self.gradcam:
                # When gradcam is used we need to remove gradients
                outputs = self.deployment_model(im).detach()
            else:
                outputs = self.deployment_model(im)

            probs = torch.softmax(outputs, dim=1)
            preds = torch.max(probs, dim=1).indices

            probabilities.append(probs.tolist())
            predicted_classes.append(preds.tolist())
            image_labels.extend(target.tolist())
            if self.gradcam and hasattr(self.deployment_model.model, "features_extractor"):
                with torch.inference_mode(False):
                    im = im.clone()
                    if isinstance(self.deployment_model.model.features_extractor, timm.models.resnet.ResNet):
                        grayscale_cam = self.cam(input_tensor=im, targets=None)
                        grayscale_cams_list.append(torch.from_numpy(grayscale_cam))
                    elif is_vision_transformer(
                        cast(BaseNetworkBuilder, self.deployment_model.model).features_extractor
                    ):
                        grayscale_cam_low_res = self.grad_rollout(input_tensor=im, targets_list=preds.tolist())
                        orig_shape = grayscale_cam_low_res.shape
                        new_shape = (orig_shape[0], im.shape[2], im.shape[3])
                        zoom_factors = tuple(np.array(new_shape) / np.array(orig_shape))
                        grayscale_cam = ndimage.zoom(grayscale_cam_low_res, zoom_factors, order=1)
                        grayscale_cams_list.append(torch.from_numpy(grayscale_cam))

    grayscale_cams: Optional[torch.Tensor] = None
    if self.gradcam:
        grayscale_cams = torch.cat(grayscale_cams_list, dim=0)

    predicted_classes = [item for sublist in predicted_classes for item in sublist]
    probabilities = [max(item) for sublist in probabilities for item in sublist]
    if self.datamodule.class_to_idx is not None:
        idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    _, pd_cm, test_accuracy = get_results(
        test_labels=image_labels,
        pred_labels=predicted_classes,
        idx_to_labels=idx_to_class,
    )

    res = pd.DataFrame(
        {
            "sample": list(test_dataloader.dataset.x),  # type: ignore[attr-defined]
            "real_label": image_labels,
            "pred_label": predicted_classes,
            "probability": probabilities,
        }
    )

    log.info("Avg classification accuracy: %s", test_accuracy)

    self.res = pd.DataFrame(
        {
            "sample": list(test_dataloader.dataset.x),  # type: ignore[attr-defined]
            "real_label": image_labels,
            "pred_label": predicted_classes,
            "probability": probabilities,
        }
    )

    # save results
    self.metadata["test_confusion_matrix"] = pd_cm
    self.metadata["test_accuracy"] = test_accuracy
    self.metadata["predictions"] = predicted_classes
    self.metadata["test_results"] = res
    self.metadata["probabilities"] = probabilities
    self.metadata["test_labels"] = image_labels
    self.metadata["grayscale_cams"] = grayscale_cams

SklearnClassification(config, output, device)

Bases: Generic[SklearnClassificationDataModuleT], Task[SklearnClassificationDataModuleT]

Sklearn classification task.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • device (str) –

    The device to use. Defaults to None.

  • output (DictConfig) –

    Dictionary defining which kind of outputs to generate. Defaults to None.

Source code in quadra/tasks/classification.py
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    device: str,
):
    super().__init__(config=config)

    self._device = device
    self.output = output
    self._backbone: ModelSignatureWrapper
    self._trainer: SklearnClassificationTrainer
    self._model: ClassifierMixin
    self.metadata: Dict[str, Any] = {
        "test_confusion_matrix": [],
        "test_accuracy": [],
        "test_results": [],
        "test_labels": [],
    }
    self.export_folder = "deployment_model"
    self.deploy_info_file = "model.json"
    self.train_dataloader_list: List[torch.utils.data.DataLoader] = []
    self.test_dataloader_list: List[torch.utils.data.DataLoader] = []

backbone: ModelSignatureWrapper property writable

model: ClassifierMixin property writable

sklearn.base.ClassifierMixin: The model.

trainer: SklearnClassificationTrainer property writable

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/classification.py
688
689
690
691
692
693
694
695
696
697
698
699
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.train()
    if self.output.report:
        self.generate_report()
    self.train_full_data()
    if self.config.export is not None and len(self.config.export.types) > 0:
        self.export()
    if self.output.test_full_data:
        self.test_full_data()
    self.finalize()

export()

Generate deployment model for the task.

Source code in quadra/tasks/classification.py
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
def export(self) -> None:
    """Generate deployment model for the task."""
    if self.config.export is None or len(self.config.export.types) == 0:
        log.info("No export type specified skipping export")
        return

    input_shapes = self.config.export.input_shapes

    idx_to_class = {v: k for k, v in self.datamodule.full_dataset.class_to_idx.items()}

    model_json, export_paths = export_model(
        config=self.config,
        model=self.backbone,
        export_folder=self.export_folder,
        half_precision=False,
        input_shapes=input_shapes,
        idx_to_class=idx_to_class,
        pytorch_model_type="backbone",
    )

    dump(self.model, os.path.join(self.export_folder, "classifier.joblib"))

    if len(export_paths) > 0:
        with open(os.path.join(self.export_folder, self.deploy_info_file), "w") as f:
            json.dump(model_json, f)

generate_report()

Generate report for the task.

Source code in quadra/tasks/classification.py
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
def generate_report(self) -> None:
    """Generate report for the task."""
    log.info("Generating report!")

    cm_list = []

    for count in range(len(self.metadata["test_accuracy"])):
        current_output_folder = f"{self.output.folder}_{count}"
        os.makedirs(current_output_folder, exist_ok=True)

        c_matrix = self.metadata["test_confusion_matrix"][count]
        cm_list.append(c_matrix)
        save_classification_result(
            results=self.metadata["test_results"][count],
            output_folder=current_output_folder,
            confmat=c_matrix,
            accuracy=self.metadata["test_accuracy"][count],
            test_dataloader=self.test_dataloader_list[count],
            config=self.config,
            output=self.output,
        )
    final_confusion_matrix = sum(cm_list)

    self.metadata["final_confusion_matrix"] = final_confusion_matrix
    # Save final conf matrix
    final_folder = f"{self.output.folder}"
    os.makedirs(final_folder, exist_ok=True)
    disp = ConfusionMatrixDisplay(
        confusion_matrix=np.array(final_confusion_matrix),
        display_labels=[x.replace("pred:", "") for x in final_confusion_matrix.columns.to_list()],
    )
    disp.plot(include_values=True, cmap=plt.cm.Greens, ax=None, colorbar=False, xticks_rotation=90)
    plt.title(f"Confusion Matrix (Accuracy: {(self.metadata['test_accuracy'][count] * 100):.2f}%)")
    plt.savefig(os.path.join(final_folder, "test_confusion_matrix.png"), bbox_inches="tight", pad_inches=0, dpi=300)
    plt.close()

prepare()

Prepare the experiment.

Source code in quadra/tasks/classification.py
450
451
452
453
454
455
456
457
458
459
460
461
462
463
def prepare(self) -> None:
    """Prepare the experiment."""
    self.datamodule = self.config.datamodule

    self.backbone = self.config.backbone

    self.model = self.config.model
    # prepare_data() must be explicitly called if the task does not include a lightining training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="fit")

    self.train_dataloader_list = list(self.datamodule.train_dataloader())
    self.test_dataloader_list = list(self.datamodule.val_dataloader())
    self.trainer = self.config.trainer

test()

Skip test phase.

Source code in quadra/tasks/classification.py
590
591
def test(self) -> None:
    """Skip test phase."""

test_full_data()

Test model trained on full dataset.

Source code in quadra/tasks/classification.py
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
@typing.no_type_check
def test_full_data(self) -> None:
    """Test model trained on full dataset."""
    self.config.datamodule.class_to_idx = self.datamodule.full_dataset.class_to_idx
    self.config.datamodule.phase = "test"
    idx_to_class = self.datamodule.full_dataset.idx_to_class
    self.datamodule.setup("test")
    test_dataloader = self.datamodule.test_dataloader()

    if len(self.datamodule.data["samples"]) == 0:
        log.info("No test data, skipping test")
        return

    _, pd_cm, accuracy, res, _ = self.trainer.test(
        test_dataloader=test_dataloader, idx_to_class=idx_to_class, predict_proba=True
    )

    output_folder_test = "test"

    os.makedirs(output_folder_test, exist_ok=True)

    save_classification_result(
        results=res,
        output_folder=output_folder_test,
        confmat=pd_cm,
        accuracy=accuracy,
        test_dataloader=test_dataloader,
        config=self.config,
        output=self.output,
    )

train()

Train the model.

Source code in quadra/tasks/classification.py
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
@typing.no_type_check
def train(self) -> None:
    """Train the model."""
    log.info("Starting training...!")
    all_features = None
    all_labels = None

    class_to_keep = None

    if hasattr(self.datamodule, "class_to_keep_training") and self.datamodule.class_to_keep_training is not None:
        class_to_keep = self.datamodule.class_to_keep_training

    if hasattr(self.datamodule, "cache") and self.datamodule.cache:
        if self.config.trainer.iteration_over_training != 1:
            raise AttributeError("Cache is only supported when iteration over training is set to 1")

        full_dataloader = self.datamodule.full_dataloader()
        all_features, all_labels, _ = get_feature(
            feature_extractor=self.backbone, dl=full_dataloader, iteration_over_training=1
        )

        sorted_indices = np.argsort(full_dataloader.dataset.x)
        all_features = all_features[sorted_indices]
        all_labels = all_labels[sorted_indices]

    # cycle over all train/test split
    for train_dataloader, test_dataloader in zip(self.train_dataloader_list, self.test_dataloader_list):
        # Reinit classifier
        self.model = self.config.model
        self.trainer.change_classifier(self.model)

        # Train on current training set
        if all_features is not None and all_labels is not None:
            # Find which are the indices used to pass from the sorted list of string to the disordered one
            sorted_indices = np.argsort(np.concatenate([train_dataloader.dataset.x, test_dataloader.dataset.x]))
            revese_sorted_indices = np.argsort(sorted_indices)

            # Use these indices to correctly match the extracted features with the new file order
            all_features_sorted = all_features[revese_sorted_indices]
            all_labels_sorted = all_labels[revese_sorted_indices]

            train_len = len(train_dataloader.dataset.x)

            self.trainer.fit(
                train_features=all_features_sorted[0:train_len], train_labels=all_labels_sorted[0:train_len]
            )

            _, pd_cm, accuracy, res, _ = self.trainer.test(
                test_dataloader=test_dataloader,
                test_features=all_features_sorted[train_len:],
                test_labels=all_labels_sorted[train_len:],
                class_to_keep=class_to_keep,
                idx_to_class=train_dataloader.dataset.idx_to_class,
                predict_proba=True,
            )
        else:
            self.trainer.fit(train_dataloader=train_dataloader)
            _, pd_cm, accuracy, res, _ = self.trainer.test(
                test_dataloader=test_dataloader,
                class_to_keep=class_to_keep,
                idx_to_class=train_dataloader.dataset.idx_to_class,
                predict_proba=True,
            )

        # save results
        self.metadata["test_confusion_matrix"].append(pd_cm)
        self.metadata["test_accuracy"].append(accuracy)
        self.metadata["test_results"].append(res)
        self.metadata["test_labels"].append(
            [
                train_dataloader.dataset.idx_to_class[i] if i != -1 else "N/A"
                for i in res["real_label"].unique().tolist()
            ]
        )

train_full_data()

Train the model on train + validation.

Source code in quadra/tasks/classification.py
582
583
584
585
586
587
588
def train_full_data(self):
    """Train the model on train + validation."""
    # Reinit classifier
    self.model = self.config.model
    self.trainer.change_classifier(self.model)

    self.trainer.fit(train_dataloader=self.datamodule.full_dataloader())

SklearnTestClassification(config, output, model_path, device, gradcam=False, **kwargs)

Bases: Evaluation[SklearnClassificationDataModuleT]

Perform a test using an imported SklearnClassification pytorch model.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • output (DictConfig) –

    where to save results

  • model_path (str) –

    path to trained model generated from SklearnClassification task.

  • device (str) –

    the device where to run the model (cuda or cpu)

  • gradcam (bool, default: False ) –

    Whether to compute gradcams

  • **kwargs (Any, default: {} ) –

    Additional arguments to pass to the task

Source code in quadra/tasks/classification.py
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
def __init__(
    self,  # pylint: disable=W0613
    config: DictConfig,
    output: DictConfig,
    model_path: str,
    device: str,
    gradcam: bool = False,
    **kwargs: Any,
):
    super().__init__(config=config, model_path=model_path, device=device, **kwargs)
    self.gradcam = gradcam
    self.output = output
    self._backbone: BaseEvaluationModel
    self._classifier: ClassifierMixin
    self.class_to_idx: Dict[str, int]
    self.idx_to_class: Dict[int, str]
    self.test_dataloader: torch.utils.data.DataLoader
    self.metadata: Dict[str, Any] = {
        "test_confusion_matrix": None,
        "test_accuracy": None,
        "test_results": None,
        "test_labels": None,
        "cams": None,
    }

backbone: BaseEvaluationModel property writable

classifier: ClassifierMixin property writable

deployment_model property writable

Deployment model.

trainer: SklearnClassificationTrainer property writable

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/classification.py
869
870
871
872
873
874
875
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.test()
    if self.output.report:
        self.generate_report()
    self.finalize()

generate_report()

Generate a report for the task.

Source code in quadra/tasks/classification.py
854
855
856
857
858
859
860
861
862
863
864
865
866
867
def generate_report(self) -> None:
    """Generate a report for the task."""
    log.info("Generating report!")
    os.makedirs(self.output.folder, exist_ok=True)
    save_classification_result(
        results=self.metadata["test_results"],
        output_folder=self.output.folder,
        confmat=self.metadata["test_confusion_matrix"],
        accuracy=self.metadata["test_accuracy"],
        test_dataloader=self.test_dataloader,
        config=self.config,
        output=self.output,
        grayscale_cams=self.metadata["cams"],
    )

prepare()

Prepare the experiment.

Source code in quadra/tasks/classification.py
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
def prepare(self) -> None:
    """Prepare the experiment."""
    super().prepare()

    idx_to_class = {}
    class_to_idx = {}
    for k, v in self.model_data["classes"].items():
        idx_to_class[int(k)] = v
        class_to_idx[v] = int(k)

    self.idx_to_class = idx_to_class
    self.class_to_idx = class_to_idx

    self.config.datamodule.class_to_idx = class_to_idx

    self.datamodule = self.config.datamodule
    # prepare_data() must be explicitly called because there is no lightning training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="test")

    self.test_dataloader = self.datamodule.test_dataloader()

    # Configure trainer
    self.trainer = self.config.trainer

test()

Run the test.

Source code in quadra/tasks/classification.py
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
def test(self) -> None:
    """Run the test."""
    _, pd_cm, accuracy, res, cams = self.trainer.test(
        test_dataloader=self.test_dataloader,
        idx_to_class=self.idx_to_class,
        predict_proba=True,
        gradcam=self.gradcam,
    )

    # save results
    self.metadata["test_confusion_matrix"] = pd_cm
    self.metadata["test_accuracy"] = accuracy
    self.metadata["test_results"] = res
    self.metadata["test_labels"] = [
        self.idx_to_class[i] if i != -1 else "N/A" for i in res["real_label"].unique().tolist()
    ]
    self.metadata["cams"] = cams