models
AttentionExtractor(model, attention_layer_name='attn_drop')
¶
Bases: Module
General attention extractor.
Parameters:
-
model
(
Module
) –Backbone model which contains the attention layer. attention_layer_name: Attention layer for extracting attention maps. Defaults to "attn_drop".
-
attention_layer_name
(
str
, default:'attn_drop'
) –Attention layer for extracting attention maps.
Source code in quadra/utils/models.py
295 296 297 298 299 300 301 |
|
clear()
¶
Clear the grabbed attentions.
Source code in quadra/utils/models.py
303 304 305 |
|
get_attention(module, input_tensor, output)
¶
Method to be registered to grab attentions.
Source code in quadra/utils/models.py
307 308 309 310 311 |
|
process_attention_maps(attentions, img_width, img_height)
staticmethod
¶
Preprocess attentions maps to be visualized.
Parameters:
-
attentions
(
Tensor
) –grabbed attentions
-
img_width
(
int
) –image width
-
img_height
(
int
) –image height
Returns:
-
Tensor
–torch.Tensor: preprocessed attentions, with the shape equal to the one of the image from
-
Tensor
–which attentions has been computed
Source code in quadra/utils/models.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
|
LSABlock(dim, num_heads, mlp_ratio=4.0, qkv_bias=False, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=torch.nn.GELU, norm_layer=torch.nn.LayerNorm, mask_diagonal=True, learnable_temperature=True)
¶
Bases: Module
Local Self Attention Block from https://arxiv.org/abs/2112.13492.
Parameters:
-
dim
(
int
) –embedding dimension
-
num_heads
(
int
) –number of attention heads
-
mlp_ratio
(
float
, default:4.0
) –ratio of mlp hidden dim to embedding dim
-
qkv_bias
(
bool
, default:False
) –enable bias for qkv if True
-
drop
(
float
, default:0.0
) –dropout rate
-
attn_drop
(
float
, default:0.0
) –attention dropout rate
-
drop_path
(
float
, default:0.0
) –stochastic depth rate
-
act_layer
(
Type[Module]
, default:GELU
) –activation layer
-
norm_layer
(
Type[LayerNorm]
, default:LayerNorm
) –: normalization layer
-
mask_diagonal
(
bool
, default:True
) –whether to mask Q^T x K diagonal with -infinity so not to count self relationship between tokens. Defaults to True
-
learnable_temperature
(
bool
, default:True
) –whether to use a learnable temperature as specified in https://arxiv.org/abs/2112.13492. Defaults to True.
Source code in quadra/utils/models.py
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
|
LocalSelfAttention(dim, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0, mask_diagonal=True, learnable_temperature=True)
¶
Bases: Module
Local Self Attention from https://arxiv.org/abs/2112.13492.
Parameters:
-
dim
(
int
) –embedding dimension.
-
num_heads
(
int
, default:8
) –number of attention heads.
-
qkv_bias
(
bool
, default:False
) –enable bias for qkv if True.
-
attn_drop
(
float
, default:0.0
) –attention dropout rate.
-
proj_drop
(
float
, default:0.0
) –projection dropout rate.
-
mask_diagonal
(
bool
, default:True
) –whether to mask Q^T x K diagonal with -infinity so not to count self relationship between tokens. Defaults to True.
-
learnable_temperature
(
bool
, default:True
) –whether to use a learnable temperature as specified in https://arxiv.org/abs/2112.13492. Defaults to True.
Source code in quadra/utils/models.py
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
|
forward(x)
¶
Computes the local self attention.
Parameters:
-
x
(
Tensor
) –input tensor
Returns:
-
Tensor
–Output of the local self attention.
Source code in quadra/utils/models.py
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
|
PositionalEncoding1D(d_model, temperature=10000.0, dropout=0.0, max_len=5000)
¶
Bases: Module
Standard sine-cosine positional encoding from https://arxiv.org/abs/2010.11929.
Parameters:
-
d_model
(
int
) –Embedding dimension
-
temperature
(
float
, default:10000.0
) –Temperature for the positional encoding. Defaults to 10000.0.
-
dropout
(
float
, default:0.0
) –Dropout rate. Defaults to 0.0.
-
max_len
(
int
, default:5000
) –Maximum length of the sequence. Defaults to 5000.
Source code in quadra/utils/models.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
|
forward(x)
¶
Forward pass of the positional encoding.
Parameters:
-
x
(
Tensor
) –torch tensor [batch_size, seq_len, embedding_dim].
Source code in quadra/utils/models.py
381 382 383 384 385 386 387 388 |
|
clip_gradients(model, clip)
¶
Parameters:
Returns:
Source code in quadra/utils/models.py
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
create_net_hat(dims, act_fun=torch.nn.ReLU, dropout_p=0)
¶
Create a sequence of linear layers with activation functions and dropout.
Parameters:
-
dims
(
List[int]
) –Dimension of hidden layers and output
-
act_fun
(
Callable
, default:ReLU
) –activation function to use between layers, default ReLU
-
dropout_p
(
float
, default:0
) –Dropout probability. Defaults to 0.
Returns:
-
Sequential
–Sequence of linear layers of dimension specified by the input, each linear layer is followed by an activation function and optionally a dropout layer with the input probability
Source code in quadra/utils/models.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
get_feature(feature_extractor, dl, iteration_over_training=1, gradcam=False, classifier=None, input_shape=None)
¶
Given a dataloader and a PyTorch model, extract features with the model and return features and labels.
Parameters:
-
dl
(
DataLoader
) –PyTorch dataloader
-
feature_extractor
(
Union[Module, BaseEvaluationModel]
) –Pretrained PyTorch backbone
-
iteration_over_training
(
int
, default:1
) –Extract feature iteration_over_training times for each image (best if used with augmentation)
-
gradcam
(
bool
, default:False
) –Whether to compute gradcams. Notice that it will slow the function
-
classifier
(
Optional[ClassifierMixin]
, default:None
) –Scikit-learn classifier
-
input_shape
(
Optional[Tuple[int, int, int]]
, default:None
) –[H,W,C], backbone input shape, needed by classifier's pytorch wrapper
Returns:
-
Tuple[ndarray, ndarray, Optional[ndarray]]
–Tuple containing: features: Model features labels: input_labels grayscale_cams: Gradcam output maps, None if gradcam arg is False
Source code in quadra/utils/models.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
init_weights(m)
¶
Basic weight initialization.
Source code in quadra/utils/models.py
68 69 70 71 72 73 74 75 76 77 78 79 |
|
is_vision_transformer(model)
¶
Verify if pytorch module is a Vision Transformer. This check is primarily needed for gradcam computation in classification tasks.
Parameters:
-
model
(
Module
) –Model
Source code in quadra/utils/models.py
191 192 193 194 195 196 197 198 |
|
net_hat(input_size, output_size)
¶
Create a linear layer with input and output neurons.
Parameters:
Returns:
-
Sequential
–A sequential containing a single Linear layer taking input neurons and producing output neurons
Source code in quadra/utils/models.py
24 25 26 27 28 29 30 31 32 33 34 35 |
|
trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0)
¶
Call _no_grad_trunc_normal_
with torch.no_grad()
.
Parameters:
-
tensor
(
Tensor
) –an n-dimensional
torch.Tensor
-
mean
(
float
, default:0.0
) –the mean of the normal distribution
-
std
(
float
, default:1.0
) –the standard deviation of the normal distribution
-
a
(
float
, default:-2.0
) –the minimum cutoff
-
b
(
float
, default:2.0
) –the maximum cutoff
Source code in quadra/utils/models.py
250 251 252 253 254 255 256 257 258 259 260 |
|