Skip to content

evaluation

automatic_datamodule_batch_size(batch_size_attribute_name='batch_size')

Automatically scale the datamodule batch size if the given function goes out of memory.

Parameters:

  • batch_size_attribute_name (str, default: 'batch_size' ) –

    The name of the attribute to modify in the datamodule

Source code in quadra/utils/evaluation.py
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
def automatic_datamodule_batch_size(batch_size_attribute_name: str = "batch_size"):
    """Automatically scale the datamodule batch size if the given function goes out of memory.

    Args:
        batch_size_attribute_name: The name of the attribute to modify in the datamodule
    """

    def decorator(func: Callable):
        """Decorator function."""

        @wraps(func)
        def wrapper(self, *args, **kwargs):
            """Wrapper function."""
            is_func_finished = False
            while not is_func_finished:
                valid_exceptions = (RuntimeError,)

                if ONNX_AVAILABLE:
                    valid_exceptions += (RuntimeException,)

                try:
                    func(self, *args, **kwargs)
                except valid_exceptions as e:
                    if "out of memory" in str(e) or "Failed to allocate memory" in str(e):
                        current_batch_size = getattr(self.datamodule, batch_size_attribute_name)
                        setattr(self.datamodule, batch_size_attribute_name, current_batch_size // 2)
                        log.warning(
                            "The function %s went out of memory, trying to reduce the batch size to %d",
                            func.__name__,
                            self.datamodule.batch_size,
                        )

                        if self.datamodule.batch_size == 0:
                            raise RuntimeError(
                                f"Unable to run {func.__name__} with batch size 1, the program will exit"
                            ) from e
                        continue

                    raise e

                is_func_finished = True

        return wrapper

    return decorator

calculate_mask_based_metrics(images, th_masks, th_preds, threshold=0.5, show_orj_predictions=False, metric=score_dice, multilabel=False, n_classes=None)

Calculate metrics based on masks and predictions.

Parameters:

  • images (ndarray) –

    Images.

  • th_masks (Tensor) –

    masks are tensors.

  • th_preds (Tensor) –

    predictions are tensors.

  • threshold (float, default: 0.5 ) –

    Threshold to apply. Defaults to 0.5.

  • show_orj_predictions (bool, default: False ) –

    Flag to show original predictions. Defaults to False.

  • metric (Callable, default: score_dice ) –

    Metric to use comparison. Defaults to score_dice.

  • multilabel (bool, default: False ) –

    True if segmentation is multiclass.

  • n_classes (Optional[int], default: None ) –

    Number of classes. If multilabel is False, this should be None.

Returns:

Source code in quadra/utils/evaluation.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def calculate_mask_based_metrics(
    images: np.ndarray,
    th_masks: torch.Tensor,
    th_preds: torch.Tensor,
    threshold: float = 0.5,
    show_orj_predictions: bool = False,
    metric: Callable = score_dice,
    multilabel: bool = False,
    n_classes: Optional[int] = None,
) -> Tuple[
    Dict[str, float],
    Dict[str, List[np.ndarray]],
    Dict[str, List[np.ndarray]],
    Dict[str, List[Union[str, float]]],
]:
    """Calculate metrics based on masks and predictions.

    Args:
        images: Images.
        th_masks: masks are tensors.
        th_preds: predictions are tensors.
        threshold: Threshold to apply. Defaults to 0.5.
        show_orj_predictions: Flag to show original predictions. Defaults to False.
        metric: Metric to use comparison. Defaults to `score_dice`.
        multilabel: True if segmentation is multiclass.
        n_classes: Number of classes. If multilabel is False, this should be None.

    Returns:
        dict: Dictionary with metrics.
    """
    masks = th_masks.cpu().numpy()
    preds = th_preds.squeeze(0).cpu().numpy()
    th_thresh_preds = (th_preds > threshold).float().cpu()
    thresh_preds = th_thresh_preds.squeeze(0).numpy()
    dice_scores = metric(th_thresh_preds, th_masks, reduction=None).numpy()
    result = {}
    if multilabel:
        if n_classes is None:
            raise ValueError("n_classes arg shouldn't be None when multilabel is True")
        preds_multilabel = (
            torch.nn.functional.one_hot(th_preds.to(torch.int64), num_classes=n_classes).squeeze(1).permute(0, 3, 1, 2)
        )
        masks_multilabel = (
            torch.nn.functional.one_hot(th_masks.to(torch.int64), num_classes=n_classes).squeeze(1).permute(0, 3, 1, 2)
        ).to(preds_multilabel.device)
        # get_stats multiclass, not considering background channel
        tp, fp, fn, tn = smp.metrics.get_stats(
            preds_multilabel[:, 1:, :, :].long(), masks_multilabel[:, 1:, :, :].long(), mode="multilabel"
        )
    else:
        tp, fp, fn, tn = smp.metrics.get_stats(th_thresh_preds.long(), th_masks.long(), mode="binary")
    per_image_iou = smp.metrics.iou_score(tp, fp, fn, tn, reduction="micro-imagewise")
    dataset_iou = smp.metrics.iou_score(tp, fp, fn, tn, reduction="micro")
    result["F1_image"] = round(float(smp.metrics.f1_score(tp, fp, fn, tn, reduction="micro-imagewise").item()), 4)
    result["F1_pixel"] = round(float(smp.metrics.f1_score(tp, fp, fn, tn, reduction="micro").item()), 4)
    result["image_iou"] = round(float(per_image_iou.item()), 4) if not per_image_iou.isnan() else np.nan
    result["dataset_iou"] = round(float(dataset_iou.item()), 4) if not dataset_iou.isnan() else np.nan
    result["TP_pixel"] = tp.sum().item()
    result["FP_pixel"] = fp.sum().item()
    result["FN_pixel"] = fn.sum().item()
    result["TN_pixel"] = tn.sum().item()
    result["TP_image"] = 0
    result["FP_image"] = 0
    result["FN_image"] = 0
    result["TN_image"] = 0
    result["num_good_image"] = 0
    result["num_bad_image"] = 0
    bad_dice, good_dice = [], []
    fg: Dict[str, List[np.ndarray]] = {"image": [], "mask": [], "thresh_pred": []}
    fb: Dict[str, List[np.ndarray]] = {"image": [], "mask": [], "thresh_pred": []}
    if show_orj_predictions:
        fg["pred"] = []
        fb["pred"] = []

    area_graph: Dict[str, List[Union[str, float]]] = {
        "Defect Area Percentage": [],
        "Accuracy": [],
    }
    for idx, (image, pred, mask, thresh_pred, dice_score) in enumerate(
        zip(images, preds, masks, thresh_preds, dice_scores)
    ):
        if np.sum(mask) == 0:
            good_dice.append(dice_score)
        else:
            bad_dice.append(dice_score)
        if mask.sum() > 0:
            result["num_bad_image"] += 1
            if thresh_pred.sum() == 0:
                result["FN_image"] += 1
                fg["image"].append(image)
                fg["mask"].append(mask)
                if show_orj_predictions:
                    fg["pred"].append(pred)
                fg["thresh_pred"].append(thresh_pred)
            else:
                result["TP_image"] += 1
            rp = regionprops(label(mask[0]))
            for r in rp:
                mask_partial = th_masks[idx, :, r.bbox[0] : r.bbox[2], r.bbox[1] : r.bbox[3]]
                pred_partial = th_thresh_preds[idx, :, r.bbox[0] : r.bbox[2], r.bbox[1] : r.bbox[3]]
                tp, fp, fn, tn = smp.metrics.get_stats(pred_partial.long(), mask_partial.long(), mode="binary")
                area = tp + fn
                area_percentage = area.sum().item() * 100 / (image.shape[0] * image.shape[1])
                defect_acc = smp.metrics.accuracy(tp, fp, fn, tn, reduction="micro")
                area_graph["Accuracy"].append(defect_acc.item() * 100)
                if area_percentage <= 1:
                    area_graph["Defect Area Percentage"].append("Very Small <1%")
                elif area_percentage <= 10:
                    area_graph["Defect Area Percentage"].append("Small <10%")
                elif area_percentage <= 25:
                    area_graph["Defect Area Percentage"].append("Medium <25%")
                else:
                    area_graph["Defect Area Percentage"].append("Large >25%")

        if mask.sum() == 0:
            result["num_good_image"] += 1
            if thresh_pred.sum() > 0:
                result["FP_image"] += 1
                fb["image"].append(image)
                fb["mask"].append(mask)
                if show_orj_predictions:
                    fb["pred"].append(pred)
                fb["thresh_pred"].append(thresh_pred)
            else:
                result["TN_image"] += 1
    result["bad_dice_score_mean"] = np.mean(bad_dice) if len(bad_dice) > 0 else "null"
    result["bad_dice_score_std"] = np.std(bad_dice) if len(bad_dice) > 0 else "null"
    result["good_dice_score_mean"] = np.mean(good_dice) if len(good_dice) > 0 else "null"
    result["good_dice_score_std"] = np.std(good_dice) if len(good_dice) > 0 else "null"
    return result, fg, fb, area_graph

create_mask_report(stage, output, mean, std, report_path, nb_samples=6, analysis=False, apply_sigmoid=True, show_all=False, threshold=0.5, metric=score_dice, show_orj_predictions=False)

Create report for segmentation experiment Args: stage: stage name. Train, validation or test output: data produced by model report_path: experiment path mean: mean values std: std values nb_samples: number of samples analysis: if True, analysis will be created apply_sigmoid: if True, sigmoid will be applied to predictions show_all: if True, all images will be shown threshold: threshold for predictions metric: metric function show_orj_predictions: if True, original predictions will be shown.

Returns:

  • List[str]

    list of paths to created images.

Source code in quadra/utils/evaluation.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
def create_mask_report(
    stage: str,
    output: Dict[str, torch.Tensor],
    mean: npt.ArrayLike,
    std: npt.ArrayLike,
    report_path: str,
    nb_samples: int = 6,
    analysis: bool = False,
    apply_sigmoid: bool = True,
    show_all: bool = False,
    threshold: float = 0.5,
    metric: Callable = score_dice,
    show_orj_predictions: bool = False,
) -> List[str]:
    """Create report for segmentation experiment
    Args:
        stage: stage name. Train, validation or test
        output: data produced by model
        report_path: experiment path
        mean: mean values
        std: std values
        nb_samples: number of samples
        analysis: if True, analysis will be created
        apply_sigmoid: if True, sigmoid will be applied to predictions
        show_all: if True, all images will be shown
        threshold: threshold for predictions
        metric: metric function
        show_orj_predictions: if True, original predictions will be shown.

    Returns:
        list of paths to created images.
    """
    if not os.path.exists(report_path):
        os.makedirs(report_path)

    th_images = output["image"]
    th_masks = output["mask"]
    th_preds = output["mask_pred"]
    th_labels = output["label"]
    n_classes = th_preds.shape[1]
    # TODO: Apply sigmoid is a wrong name now
    if apply_sigmoid:
        if n_classes == 1:
            th_preds = torch.nn.Sigmoid()(th_preds)
            th_thresh_preds = (th_preds > threshold).float()
        else:
            th_preds = torch.nn.Softmax(dim=1)(th_preds)
            th_thresh_preds = torch.argmax(th_preds, dim=1).float().unsqueeze(1)
            # Compute labels from the given masks since by default they are all 0
            th_labels = th_masks.max(dim=2)[0].max(dim=2)[0].squeeze(dim=1)
            show_orj_predictions = False

    mean = np.asarray(mean)
    std = np.asarray(std)
    unnormalize = UnNormalize(mean, std)

    images = np.array(
        [(unnormalize(image).cpu().numpy().transpose((1, 2, 0)) * 255).astype(np.uint8) for image in th_images]
    )
    masks = th_masks.cpu().numpy()
    preds = th_preds.squeeze(0).cpu().numpy()
    thresh_preds = th_thresh_preds.squeeze(0).cpu().numpy()
    dice_scores = metric(th_thresh_preds.cpu(), th_masks.cpu(), reduction=None).numpy()

    labels = th_labels.cpu().numpy()
    binary_labels = labels == 0

    row_names = ["Input", "Mask", "Pred", f"Pred>{threshold}"]
    bounds = [(0, 255), (0.0, float(n_classes - 1)), (0.0, 1.0), (0.0, float(n_classes - 1))]
    if not show_orj_predictions:
        row_names.pop(2)
        bounds.pop(2)

    if not show_all:
        sorted_idx = np.argsort(dice_scores)
    else:
        sorted_idx = np.arange(len(dice_scores))

    binary_labels = binary_labels[sorted_idx]

    non_zero_score_idx = sorted_idx[~binary_labels]
    zero_score_idx = sorted_idx[binary_labels]
    file_paths = []
    for name, current_score_idx in zip(["good", "bad"], [zero_score_idx, non_zero_score_idx]):
        if len(current_score_idx) == 0:
            continue

        nb_total_samples = len(current_score_idx)
        nb_selected_samples = nb_total_samples if nb_samples > nb_total_samples else nb_samples
        fig_w = int(nb_selected_samples * 2)
        fig_h = int(len(row_names) * 2)
        if not show_all:
            worst_idx = current_score_idx[:nb_selected_samples].tolist()
            best_idx = current_score_idx[-nb_selected_samples:].tolist()
            random_idx = np.random.choice(current_score_idx, nb_selected_samples, replace=False).tolist()

            indexes = {"best": best_idx, "worst": worst_idx, "random": random_idx}
        else:
            indexes = {"all": current_score_idx[:nb_selected_samples].tolist()}
        for k, v in indexes.items():
            file_path = os.path.join(report_path, f"{stage}_{name}_{k}_results.png")
            images_to_show = [images[v], masks[v], preds[v], thresh_preds[v]]
            if not show_orj_predictions or n_classes > 1:
                images_to_show.pop(2)
            create_grid_figure(
                images_to_show,
                nrows=len(row_names),
                ncols=nb_selected_samples,
                row_names=row_names,
                file_path=file_path,
                fig_size=(fig_w, fig_h),
                bounds=bounds,
            )
            file_paths.append(file_path)
    if analysis:
        analysis_file_path = os.path.join(report_path, f"{stage}_analysis.yaml")
        result, fg, fb, area_graph = calculate_mask_based_metrics(
            images=images,
            th_masks=th_masks,
            th_preds=th_thresh_preds,
            threshold=threshold,
            show_orj_predictions=show_orj_predictions,
            metric=metric,
            multilabel=bool(n_classes > 1),
            n_classes=n_classes,
        )

        if len(fg["image"]) > 0:
            if len(fg["image"]) > nb_samples:
                for k, v in fg.items():
                    fg[k] = v[:nb_samples]

            fg_file_path = os.path.join(report_path, f"{stage}_fn_results.png")
            fig_w = int(len(fg["image"]) * 2)
            create_grid_figure(
                [fg for _, fg in fg.items()],
                nrows=len(row_names),
                ncols=len(fg["image"]),
                row_names=row_names,
                file_path=fg_file_path,
                fig_size=(fig_w, fig_h),
                bounds=bounds,
            )
            file_paths.append(fg_file_path)

        if len(fb["image"]) > 0:
            if len(fb["image"]) > nb_samples:
                for k, v in fb.items():
                    fb[k] = v[:nb_samples]
            fb_file_path = os.path.join(report_path, f"{stage}_fp_results.png")

            fig_w = int(len(fb["image"]) * 2)
            create_grid_figure(
                [fb for _, fb in fb.items()],
                nrows=len(row_names),
                ncols=len(fb["image"]),
                row_names=row_names,
                file_path=fb_file_path,
                fig_size=(fig_w, fig_h),
                bounds=bounds,
            )
            file_paths.append(fb_file_path)
        if len(area_graph["Defect Area Percentage"]) > 0:
            fn_area_path = os.path.join(report_path, f"{stage}_acc_area.png")
            fn_area_df = pd.DataFrame(area_graph)
            ax = sns.boxplot(
                x="Defect Area Percentage",
                y="Accuracy",
                data=fn_area_df,
                order=["Very Small <1%", "Small <10%", "Medium <25%", "Large >25%"],
            )
            ax.set_facecolor("white")
            fig = ax.get_figure()
            fig.savefig(fn_area_path)
            plt.close(fig)

            file_paths.append(fn_area_path)
        with open(analysis_file_path, "w") as file:
            yaml.dump(literal_eval(str(result)), file, default_flow_style=False)
        file_paths.append(analysis_file_path)

    return file_paths

dice(input_tensor, target, smooth=1.0, eps=1e-08, reduction='mean')

Dice loss computation function.

Parameters:

  • input_tensor (Tensor) –

    input tensor coming from a model

  • target (Tensor) –

    target tensor to compare with

  • smooth (float, default: 1.0 ) –

    smoothing factor

  • eps (float, default: 1e-08 ) –

    epsilon to avoid zero division

  • reduction (Optional[str], default: 'mean' ) –

    reduction method, one of "mean", "sum", "none"

Returns:

  • Tensor

    The computed loss

Source code in quadra/utils/evaluation.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def dice(
    input_tensor: torch.Tensor,
    target: torch.Tensor,
    smooth: float = 1.0,
    eps: float = 1e-8,
    reduction: Optional[str] = "mean",
) -> torch.Tensor:
    """Dice loss computation function.

    Args:
        input_tensor:  input tensor coming from a model
        target: target tensor to compare with
        smooth: smoothing factor
        eps: epsilon to avoid zero division
        reduction: reduction method, one of "mean", "sum", "none"

    Returns:
        The computed loss
    """
    bs = input_tensor.size(0)
    iflat = input_tensor.contiguous().view(bs, -1)
    tflat = target.contiguous().view(bs, -1)
    intersection = (iflat * tflat).sum(-1)
    loss = 1 - (2.0 * intersection + smooth) / (iflat.sum(-1) + tflat.sum(-1) + smooth + eps)

    if reduction == "mean":
        loss = loss.mean()
    return loss

score_dice(y_pred, y_true, reduction=None)

Calculate dice score.

Source code in quadra/utils/evaluation.py
61
62
63
64
65
66
67
def score_dice(
    y_pred,
    y_true,
    reduction=None,
) -> torch.Tensor:
    """Calculate dice score."""
    return 1 - dice(y_pred, y_true, reduction=reduction)

score_dice_smp(y_pred, y_true, mode='binary')

Compute dice using smp function. Handle both binary and multiclass scenario.

Parameters:

  • y_pred (Tensor) –

    1xCxHxW one channel for each class

  • y_true (Tensor) –

    1x1xHxW true mask with value in [0, ..., n_classes]

  • mode (str, default: 'binary' ) –

    "binary" or "multiclass"

Returns:

Source code in quadra/utils/evaluation.py
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
def score_dice_smp(y_pred: torch.Tensor, y_true: torch.Tensor, mode: str = "binary") -> torch.Tensor:
    """Compute dice using smp function. Handle both binary and multiclass scenario.

    Args:
        y_pred: 1xCxHxW one channel for each class
        y_true: 1x1xHxW true mask with value in [0, ..., n_classes]
        mode: "binary" or "multiclass"

    Returns:
        dice score
    """
    if mode not in {BINARY_MODE, MULTICLASS_MODE}:
        raise ValueError(f"Mode {mode} not valid.")

    loss = DiceLoss(mode=mode, from_logits=False)

    return 1 - loss(y_pred, y_true)