Skip to content

anomaly

AnomalibDetection(config, module_function, checkpoint_path=None, run_test=True, report=True)

Bases: Generic[AnomalyDataModuleT], LightningTask[AnomalyDataModuleT]

Anomaly Detection Task.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • module_function (DictConfig) –

    The function that instantiates the module and model

  • checkpoint_path (Optional[str], default: None ) –

    The path to the checkpoint to load the model from. Defaults to None.

  • run_test (bool, default: True ) –

    Whether to run the test after training. Defaults to False.

  • report (bool, default: True ) –

    Whether to report the results. Defaults to False.

Source code in quadra/tasks/anomaly.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def __init__(
    self,
    config: DictConfig,
    module_function: DictConfig,
    checkpoint_path: Optional[str] = None,
    run_test: bool = True,
    report: bool = True,
):
    super().__init__(
        config=config,
        checkpoint_path=checkpoint_path,
        run_test=run_test,
        report=report,
    )
    self._module: AnomalyModule
    self.module_function = module_function
    self.export_folder = "deployment_model"
    self.report_path = ""
    self.test_results: Optional[List[Dict]] = None

module: AnomalyModule property writable

Get the module.

export()

Export model for production.

Source code in quadra/tasks/anomaly.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def export(self) -> None:
    """Export model for production."""
    if self.config.trainer.get("fast_dev_run"):
        log.warning("Skipping export since fast_dev_run is enabled")
        return

    model = self.module.model

    input_shapes = self.config.export.input_shapes

    half_precision = "16" in self.trainer.precision

    model_json, export_paths = export_model(
        config=self.config,
        model=model,
        export_folder=self.export_folder,
        half_precision=half_precision,
        input_shapes=input_shapes,
        idx_to_class={0: "good", 1: "defect"},
    )

    if len(export_paths) == 0:
        return

    model_json["image_threshold"] = np.round(self.module.image_threshold.value.item(), 3)
    model_json["pixel_threshold"] = np.round(self.module.pixel_threshold.value.item(), 3)
    model_json["anomaly_method"] = self.config.model.model.name

    with open(os.path.join(self.export_folder, "model.json"), "w") as f:
        json.dump(model_json, f, cls=utils.HydraEncoder)

generate_report()

Generate a report for the task and try to upload artifacts.

Source code in quadra/tasks/anomaly.py
265
266
267
268
def generate_report(self):
    """Generate a report for the task and try to upload artifacts."""
    self._generate_report()
    self._upload_artifacts()

prepare()

Prepare the task.

Source code in quadra/tasks/anomaly.py
103
104
105
106
107
def prepare(self) -> None:
    """Prepare the task."""
    super().prepare()
    self.module = self.config.model
    self.module.model = ModelSignatureWrapper(self.module.model)

test()

Lightning test.

Source code in quadra/tasks/anomaly.py
140
141
142
143
def test(self) -> Any:
    """Lightning test."""
    self.test_results = super().test()
    return self.test_results

AnomalibEvaluation(config, model_path, use_training_threshold=False, device=None, training_threshold_type=None)

Bases: Evaluation[AnomalyDataModule]

Evaluation task for Anomalib.

Parameters:

  • config (DictConfig) –

    Task configuration

  • model_path (str) –

    Path to the model folder that contains an exported model

  • use_training_threshold (bool, default: False ) –

    Whether to use the training threshold for the evaluation or use the one that maximizes the F1 score on the test set.

  • device (Optional[str], default: None ) –

    Device to use for evaluation. If None, the device is automatically determined.

Source code in quadra/tasks/anomaly.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def __init__(
    self,
    config: DictConfig,
    model_path: str,
    use_training_threshold: bool = False,
    device: Optional[str] = None,
    training_threshold_type: Optional[Literal["image", "pixel"]] = None,
):
    super().__init__(config=config, model_path=model_path, device=device)

    self.use_training_threshold = use_training_threshold

    if training_threshold_type is not None and training_threshold_type not in ["image", "pixel"]:
        raise ValueError("Training threshold type must be either image or pixel")

    if training_threshold_type is None and use_training_threshold:
        log.warning("Using training threshold but no training threshold type is provided, defaulting to image")
        training_threshold_type = "image"

    self.training_threshold_type = training_threshold_type

execute()

Execute the evaluation.

Source code in quadra/tasks/anomaly.py
547
548
549
550
551
552
def execute(self) -> None:
    """Execute the evaluation."""
    self.prepare()
    self.test()
    self.generate_report()
    self.finalize()

generate_report()

Generate report.

Source code in quadra/tasks/anomaly.py
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
def generate_report(self) -> None:
    """Generate report."""
    log.info("Generating report")
    if len(self.report_path) > 0:
        os.makedirs(self.report_path, exist_ok=True)

    os.makedirs(os.path.join(self.report_path, "predictions"), exist_ok=True)
    os.makedirs(os.path.join(self.report_path, "heatmaps"), exist_ok=True)

    anomaly_scores = self.metadata["anomaly_scores"].cpu().numpy()
    good_scores = anomaly_scores[np.where(np.array(self.metadata["image_labels"]) == 0)]
    defect_scores = anomaly_scores[np.where(np.array(self.metadata["image_labels"]) == 1)]

    count_overlapping_scores = 0

    if len(good_scores) != 0 and len(defect_scores) != 0 and defect_scores.min() <= good_scores.max():
        count_overlapping_scores = len(
            np.where((anomaly_scores >= defect_scores.min()) & (anomaly_scores <= good_scores.max()))[0]
        )

    plot_cumulative_histogram(good_scores, defect_scores, self.metadata["threshold"], self.report_path)

    json_output = {
        "observations": [],
        "threshold": np.round(self.metadata["threshold"], 3),
        "f1_score": np.round(self.metadata["optimal_f1"], 3),
        "metrics": {
            "overlapping_scores": count_overlapping_scores,
        },
    }

    min_anomaly_score = self.metadata["anomaly_scores"].min().item()
    max_anomaly_score = self.metadata["anomaly_scores"].max().item()

    if min_anomaly_score == max_anomaly_score:
        # Handle the case where all anomaly scores are the same, skip normalization
        min_anomaly_score = 0
        max_anomaly_score = 1

    tg, fb, fg, tb = 0, 0, 0, 0

    mask_area = None
    crop_area = None

    if hasattr(self.datamodule, "valid_area_mask") and self.datamodule.valid_area_mask is not None:
        mask_area = cv2.imread(self.datamodule.valid_area_mask, 0)
        mask_area = (mask_area > 0).astype(np.uint8)

    if hasattr(self.datamodule, "crop_area") and self.datamodule.crop_area is not None:
        crop_area = self.datamodule.crop_area

    for img_path, gt_label, anomaly_score, anomaly_map in tqdm(
        zip(
            self.metadata["image_paths"],
            self.metadata["image_labels"],
            self.metadata["anomaly_scores"],
            self.metadata["anomaly_maps"],
        ),
        total=len(self.metadata["image_paths"]),
    ):
        img = cv2.imread(img_path, 0)
        if mask_area is not None:
            img = img * mask_area

        if crop_area is not None:
            img = img[crop_area[1] : crop_area[3], crop_area[0] : crop_area[2]]

        output_mask = (anomaly_map >= self.metadata["threshold"]).cpu().numpy().squeeze().astype(np.uint8)
        output_mask_name = os.path.splitext(os.path.basename(img_path))[0] + ".png"
        pred_label = int(anomaly_score >= self.metadata["threshold"])
        anomaly_probability = np.clip(
            ((anomaly_score.item() - self.metadata["threshold"]) / (max_anomaly_score - min_anomaly_score)) + 0.5,
            0,
            1,
        )

        json_output["observations"].append(
            {
                "image_path": os.path.dirname(img_path),
                "file_name": os.path.basename(img_path),
                "expectation": gt_label if gt_label != -1 else "",
                "prediction": pred_label,
                "prediction_mask": output_mask_name,
                "prediction_heatmap": output_mask_name,
                "is_correct": pred_label == gt_label if gt_label != -1 else True,
                "anomaly_score": f"{anomaly_score.item():.3f}",
                "anomaly_probability": f"{anomaly_probability:.3f}",
            }
        )

        if gt_label == 0 and pred_label == 0:
            tg += 1
        elif gt_label == 0 and pred_label == 1:
            fb += 1
        elif gt_label == 1 and pred_label == 0:
            fg += 1
        elif gt_label == 1 and pred_label == 1:
            tb += 1

        output_mask = output_mask * 255
        output_mask = cv2.resize(output_mask, (img.shape[1], img.shape[0]))
        cv2.imwrite(os.path.join(self.report_path, "predictions", output_mask_name), output_mask)

        # Normalize the heatmaps based on the current min and max anomaly score, otherwise even on good images the
        # anomaly map looks like there are defects while it's not true
        output_heatmap = (
            (anomaly_map.cpu().numpy().squeeze() - self.metadata["threshold"])
            / (max_anomaly_score - min_anomaly_score)
        ) + 0.5
        output_heatmap = np.clip(output_heatmap, 0, 1)
        output_heatmap = anomaly_map_to_color_map(output_heatmap, normalize=False)
        output_heatmap = cv2.resize(output_heatmap, (img.shape[1], img.shape[0]))
        cv2.imwrite(
            os.path.join(self.report_path, "heatmaps", output_mask_name),
            cv2.cvtColor(output_heatmap, cv2.COLOR_RGB2BGR),
        )

    json_output["metrics"]["confusion_matrix"] = {
        "class_labels": ["normal", "anomaly"],
        "matrix": [
            [tg, fb],
            [fg, tb],
        ],
    }

    with open(os.path.join(self.report_path, "anomaly_test_output.json"), "w") as f:
        json.dump(json_output, f)

prepare()

Prepare the evaluation.

Source code in quadra/tasks/anomaly.py
347
348
349
350
351
352
353
def prepare(self) -> None:
    """Prepare the evaluation."""
    super().prepare()
    self.datamodule = self.config.datamodule
    # prepare_data() must be explicitly called because there is no lightning training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="test")

test()

Perform test.

Source code in quadra/tasks/anomaly.py
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
@automatic_datamodule_batch_size(batch_size_attribute_name="test_batch_size")
def test(self) -> None:
    """Perform test."""
    log.info("Running test")
    test_dataloader = self.datamodule.test_dataloader()

    optimal_f1 = OptimalF1(num_classes=None, pos_label=1)  # type: ignore[arg-type]

    anomaly_scores = []
    anomaly_maps = []
    image_labels = []
    image_paths = []

    with torch.no_grad():
        for batch_item in tqdm(test_dataloader):
            batch_images = batch_item["image"]
            batch_labels = batch_item["label"]
            image_labels.extend(batch_labels.tolist())
            image_paths.extend(batch_item["image_path"])
            if self.model_data.get("anomaly_method") == "efficientad":
                model_output = self.deployment_model(batch_images.to(self.device), None)
            else:
                model_output = self.deployment_model(batch_images.to(self.device))
            anomaly_map, anomaly_score = model_output[0], model_output[1]
            anomaly_map = anomaly_map.cpu()
            anomaly_score = anomaly_score.cpu()
            known_labels = torch.where(batch_labels != -1)[0]
            if len(known_labels) > 0:
                # Skip computing F1 score for images without gt
                optimal_f1.update(anomaly_score[known_labels], batch_labels[known_labels])
            anomaly_scores.append(anomaly_score)
            anomaly_maps.append(anomaly_map)

    anomaly_scores = torch.cat(anomaly_scores)
    anomaly_maps = torch.cat(anomaly_maps)

    if any(x != -1 for x in image_labels):
        if self.use_training_threshold:
            _image_labels = torch.tensor(image_labels)
            threshold = torch.tensor(float(self.model_data[f"{self.training_threshold_type}_threshold"]))
            known_labels = torch.where(_image_labels != -1)[0]

            _image_labels = _image_labels[known_labels]
            _anomaly_scores = anomaly_scores[known_labels]

            pred_labels = (_anomaly_scores >= threshold).long()

            optimal_f1_score = torch.tensor(f1_score(_image_labels, pred_labels))
        else:
            optimal_f1_score = optimal_f1.compute()
            threshold = optimal_f1.threshold
    else:
        log.warning("No ground truth available during evaluation, use training image threshold for reporting")
        optimal_f1_score = torch.tensor(0)
        threshold = torch.tensor(float(self.model_data["image_threshold"]))

    log.info("Computed F1 score: %s", optimal_f1_score.item())
    self.metadata["anomaly_scores"] = anomaly_scores
    self.metadata["anomaly_maps"] = anomaly_maps
    self.metadata["image_labels"] = image_labels
    self.metadata["image_paths"] = image_paths
    self.metadata["threshold"] = threshold.item()
    self.metadata["optimal_f1"] = optimal_f1_score.item()