anomaly
AnomalyDataset(transform, samples, task='segmentation', valid_area_mask=None, crop_area=None)
¶
Bases: Dataset
Anomaly Dataset.
Parameters:
-
transform
(
Compose
) –Albumentations compose.
-
task
(
str
, default:'segmentation'
) –classification
orsegmentation
-
samples
(
DataFrame
) –Pandas dataframe containing samples following the same structure created by make_anomaly_dataset
-
valid_area_mask
(
Optional[str]
, default:None
) –Optional path to the mask to use to filter out the valid area of the image. If None, the whole image is considered valid.
-
crop_area
(
Optional[Tuple[int, int, int, int]]
, default:None
) –Optional tuple of 4 integers (x1, y1, x2, y2) to crop the image to the specified area. If None, the whole image is considered valid.
Source code in quadra/datasets/anomaly.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
__getitem__(index)
¶
Get dataset item for the index index
.
Parameters:
-
index
(
int
) –Index to get the item.
Returns:
-
Dict[str, Union[str, Tensor]]
–Dict of image tensor during training.
-
Dict[str, Union[str, Tensor]]
–Otherwise, Dict containing image path, target path, image tensor, label and transformed bounding box.
Source code in quadra/datasets/anomaly.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
__len__()
¶
Get length of the dataset.
Source code in quadra/datasets/anomaly.py
224 225 226 |
|
create_validation_set_from_test_set(samples, seed=0)
¶
Craete Validation Set from Test Set.
This function creates a validation set from test set by splitting both normal and abnormal samples to two.
Parameters:
-
samples
(
DataFrame
) –Dataframe containing dataset info such as filenames, splits etc.
-
seed
(
int
, default:0
) –Random seed to ensure reproducibility. Defaults to 0.
Source code in quadra/datasets/anomaly.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
make_anomaly_dataset(path, split=None, split_ratio=0.1, seed=0, mask_suffix=None, create_test_set_if_empty=True)
¶
Create dataframe by parsing a folder following the MVTec data file structure.
The files are expected to follow the structure
path/to/dataset/split/label/image_filename.xyz path/to/dataset/ground_truth/label/mask_filename.png
Masks MUST be png images, no other format is allowed Split can be either train/val/test
This function creates a dataframe to store the parsed information based on the following format: |---|---------------|-------|---------|--------------|-----------------------------------------------|-------------| | | path | split | targets | samples | mask_path | label_index | |---|---------------|-------|---------|--------------|-----------------------------------------------|-------------| | 0 | datasets/name | test | defect | filename.xyz | ground_truth/defect/filename{mask_suffix}.png | 1 | |---|---------------|-------|---------|--------------|-----------------------------------------------|-------------|
Parameters:
-
path
(
Path
) –Path to dataset
-
split
(
Optional[str]
, default:None
) –Dataset split (i.e., either train or test). Defaults to None.
-
split_ratio
(
float
, default:0.1
) –Ratio to split normal training images and add to the test set in case test set doesn't contain any normal images. Defaults to 0.1.
-
seed
(
int
, default:0
) –Random seed to ensure reproducibility when splitting. Defaults to 0.
-
mask_suffix
(
Optional[str]
, default:None
) –String to append to the base filename to get the mask name, by default for MVTec dataset masks are saved as imagename_mask.png in this case the parameter shoul be filled with "_mask"
-
create_test_set_if_empty
(
bool
, default:True
) –If True, create a test set if the test set is empty.
Example
The following example shows how to get training samples from MVTec bottle category:
root = Path('./MVTec') category = 'bottle' path = root / category path PosixPath('MVTec/bottle')
samples = make_anomaly_dataset(path, split='train', split_ratio=0.1, seed=0) samples.head() path split label image_path mask_path label_index 0 MVTec/bottle train good MVTec/bottle/train/good/105.png MVTec/bottle/ground_truth/good/105_mask.png 0 1 MVTec/bottle train good MVTec/bottle/train/good/017.png MVTec/bottle/ground_truth/good/017_mask.png 0 2 MVTec/bottle train good MVTec/bottle/train/good/137.png MVTec/bottle/ground_truth/good/137_mask.png 0 3 MVTec/bottle train good MVTec/bottle/train/good/152.png MVTec/bottle/ground_truth/good/152_mask.png 0 4 MVTec/bottle train good MVTec/bottle/train/good/109.png MVTec/bottle/ground_truth/good/109_mask.png 0
Returns:
-
DataFrame
–An output dataframe containing samples for the requested split (ie., train or test)
Source code in quadra/datasets/anomaly.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
split_normal_images_in_train_set(samples, split_ratio=0.1, seed=0)
¶
Split normal images in train set.
This function splits the normal images in training set and assigns the
values to the test set. This is particularly useful especially when the
test set does not contain any normal images.
This is important because when the test set doesn't have any normal images,
AUC computation fails due to having single class.
Parameters:
-
samples
(
DataFrame
) –Dataframe containing dataset info such as filenames, splits etc.
-
split_ratio
(
float
, default:0.1
) –Train-Test normal image split ratio. Defaults to 0.1.
-
seed
(
int
, default:0
) –Random seed to ensure reproducibility. Defaults to 0.
Returns:
-
DataFrame
–Output dataframe where the part of the training set is assigned to test set.
Source code in quadra/datasets/anomaly.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|