utils
Common utility functions. Some of them are mostly based on https://github.com/ashleve/lightning-hydra-template.
HydraEncoder
¶
Bases: JSONEncoder
Custom JSON encoder to handle OmegaConf objects.
default(o)
¶
Convert OmegaConf objects to base python objects.
Source code in quadra/utils/utils.py
452 453 454 455 456 457 |
|
NumpyEncoder
¶
Bases: JSONEncoder
Custom JSON encoder to handle numpy objects.
default(o)
¶
Custom JSON encoder to handle numpy objects.
Source code in quadra/utils/utils.py
463 464 465 466 467 468 469 470 471 472 |
|
concat_all_gather(tensor)
¶
Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient.
Source code in quadra/utils/utils.py
499 500 501 502 503 504 505 506 507 508 |
|
extras(config)
¶
A couple of optional utilities, controlled by main config file: - disabling warnings - forcing debug friendly configuration - verifying experiment name is set when running in experiment mode. Modifies DictConfig in place.
Parameters:
-
config
(
DictConfig
) –Configuration composed by Hydra.
Source code in quadra/utils/utils.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
finish(config, module, datamodule, trainer, callbacks, logger, export_folder)
¶
Upload config files to MLFlow server.
Parameters:
-
config
(
DictConfig
) –Configuration composed by Hydra.
-
module
(
LightningModule
) –LightningModule.
-
datamodule
(
LightningDataModule
) –LightningDataModule.
-
trainer
(
Trainer
) –LightningTrainer.
-
callbacks
(
List[Callback]
) –List of LightningCallbacks.
-
logger
(
List[Logger]
) –List of LightningLoggers.
-
export_folder
(
str
) –Folder where the deployment models are exported.
Source code in quadra/utils/utils.py
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
|
flatten_list(l)
¶
Return an iterator over the flattened list.
Parameters:
Yields:
-
Any
–Iterator[Any]: the iterator over the flattend list
Source code in quadra/utils/utils.py
433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
|
get_device(cuda=True)
¶
Returns the device to use for training.
Parameters:
-
cuda
(
bool
, default:True
) –whether to use cuda or not
Returns:
-
str
–The device to use
Source code in quadra/utils/utils.py
410 411 412 413 414 415 416 417 418 419 420 421 422 |
|
get_logger(name=__name__)
¶
Initializes multi-GPU-friendly python logger.
Source code in quadra/utils/utils.py
45 46 47 48 49 50 51 52 53 54 |
|
get_tensorboard_logger(trainer)
¶
Safely get tensorboard logger from Lightning Trainer loggers.
Parameters:
-
trainer
(
Trainer
) –Pytorch Lightning Trainer.
Returns:
-
Optional[TensorBoardLogger]
–An mlflow logger if available, else None.
Source code in quadra/utils/utils.py
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
|
load_envs(env_file=None)
¶
Load all the environment variables defined in the env_file
.
This is equivalent to . env_file
in bash.
It is possible to define all the system specific variables in the env_file
.
Parameters:
-
env_file
(
Optional[str]
, default:None
) –the file that defines the environment variables to use. If None it searches for a
.env
file in the project.
Source code in quadra/utils/utils.py
356 357 358 359 360 361 362 363 364 365 366 |
|
log_hyperparameters(config, model, trainer)
¶
This method controls which parameters from Hydra config are saved by Lightning loggers.
Additionaly saves
- number of trainable model parameters
Source code in quadra/utils/utils.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
model_type_from_path(model_path)
¶
Determine the type of the machine learning model based on its file extension.
Parameters: - model_path (str): The file path of the machine learning model.
- str: The type of the model, which can be one of the following:
- "torchscript" if the model has a '.pt' extension (TorchScript).
- "pytorch" if the model has a '.pth' extension (PyTorch).
- "simplified_onnx" if the model file ends with 'simplified.onnx' (Simplified ONNX).
- "onnx" if the model has a '.onnx' extension (ONNX).
- "json" id the model has a '.json' extension (JSON).
- None if model extension is not supported.
Example:
model_path = "path/to/your/model.onnx"
model_type = model_type_from_path(model_path)
print(f"The model type is: {model_type}")
Source code in quadra/utils/utils.py
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
|
nested_set(dic, keys, value)
¶
Assign the value of a dictionary using nested keys.
Source code in quadra/utils/utils.py
425 426 427 428 429 430 |
|
print_config(config, fields=('task', 'trainer', 'model', 'datamodule', 'callbacks', 'logger', 'core', 'backbone', 'transforms', 'optimizer', 'scheduler'), resolve=True)
¶
Prints content of DictConfig using Rich library and its tree structure.
Parameters:
-
config
(
DictConfig
) –Configuration composed by Hydra.
-
fields
(
Sequence[str]
, default:('task', 'trainer', 'model', 'datamodule', 'callbacks', 'logger', 'core', 'backbone', 'transforms', 'optimizer', 'scheduler')
) –Determines which main fields from config will be printed and in what order.
-
resolve
(
bool
, default:True
) –Whether to resolve reference fields of DictConfig.
Source code in quadra/utils/utils.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
setup_opencv()
¶
Setup OpenCV to use only one thread and not use OpenCL.
Source code in quadra/utils/utils.py
404 405 406 407 |
|
upload_file_tensorboard(file_path, tensorboard_logger)
¶
Upload a file to tensorboard handling different extensions.
Parameters:
-
file_path
(
str
) –Path to the file to upload.
-
tensorboard_logger
(
TensorBoardLogger
) –Tensorboard logger instance.
Source code in quadra/utils/utils.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|