Skip to content

evaluation

BaseEvaluationModel(config)

Bases: ABC

Base interface for all evaluation models.

Source code in quadra/models/evaluation.py
29
30
31
32
33
34
35
def __init__(self, config: DictConfig) -> None:
    self.model: Any
    self.model_path: str | None
    self.device: str
    self.config = config
    self.is_loaded = False
    self.model_dtype: np.dtype | torch.dtype

device: str property writable

Return the device of the model.

training: bool property

Return whether model is in training mode.

cpu() abstractmethod

Move model to cpu.

Source code in quadra/models/evaluation.py
57
58
59
@abstractmethod
def cpu(self):
    """Move model to cpu."""

eval() abstractmethod

Set model to evaluation mode.

Source code in quadra/models/evaluation.py
49
50
51
@abstractmethod
def eval(self):
    """Set model to evaluation mode."""

half() abstractmethod

Convert model to half precision.

Source code in quadra/models/evaluation.py
53
54
55
@abstractmethod
def half(self):
    """Convert model to half precision."""

load_from_disk(model_path, device='cpu') abstractmethod

Load model from disk.

Source code in quadra/models/evaluation.py
41
42
43
@abstractmethod
def load_from_disk(self, model_path: str, device: str = "cpu"):
    """Load model from disk."""

to(device) abstractmethod

Move model to device.

Source code in quadra/models/evaluation.py
45
46
47
@abstractmethod
def to(self, device: str):
    """Move model to device."""

ONNXEvaluationModel(config)

Bases: BaseEvaluationModel

Wrapper for ONNX models. It's designed to provide a similar interface to standard torch models.

Source code in quadra/models/evaluation.py
180
181
182
183
184
185
186
def __init__(self, config: DictConfig) -> None:
    if not ONNX_AVAILABLE:
        raise ImportError(
            "onnxruntime is not installed. Please install ONNX capabilities for quadra with: poetry install -E onnx"
        )
    super().__init__(config=config)
    self.session_options = self.generate_session_options()

__call__(*inputs)

Run inference on the model and return the output as torch tensors.

Source code in quadra/models/evaluation.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def __call__(self, *inputs: np.ndarray | torch.Tensor) -> Any:
    """Run inference on the model and return the output as torch tensors."""
    # TODO: Maybe we can support also kwargs
    use_pytorch = False

    onnx_inputs: dict[str, np.ndarray | torch.Tensor] = {}

    for onnx_input, current_input in zip(self.model.get_inputs(), inputs):
        if isinstance(current_input, torch.Tensor):
            onnx_inputs[onnx_input.name] = current_input
            use_pytorch = True
        elif isinstance(current_input, np.ndarray):
            onnx_inputs[onnx_input.name] = current_input
        else:
            raise ValueError(f"Invalid input type: {type(inputs)}")

        if use_pytorch and isinstance(current_input, np.ndarray):
            raise ValueError("Cannot mix torch and numpy inputs")

    if use_pytorch:
        onnx_output = self._forward_from_pytorch(cast(dict[str, torch.Tensor], onnx_inputs))
    else:
        onnx_output = self._forward_from_numpy(cast(dict[str, np.ndarray], onnx_inputs))

    onnx_output = [torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x for x in onnx_output]

    if len(onnx_output) == 1:
        onnx_output = onnx_output[0]

    return onnx_output

cast_onnx_dtype(onnx_dtype)

Cast ONNX dtype to numpy or pytorch dtype.

Source code in quadra/models/evaluation.py
320
321
322
def cast_onnx_dtype(self, onnx_dtype: str) -> torch.dtype | np.dtype:
    """Cast ONNX dtype to numpy or pytorch dtype."""
    return onnx_to_torch_dtype_dict[onnx_dtype]

cpu()

Move model to cpu.

Source code in quadra/models/evaluation.py
316
317
318
def cpu(self):
    """Move model to cpu."""
    self.to("cpu")

eval()

Fake interface to match torch models.

Source code in quadra/models/evaluation.py
308
309
310
def eval(self):
    """Fake interface to match torch models."""
    return self

generate_session_options()

Generate session options from the current config.

Source code in quadra/models/evaluation.py
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def generate_session_options(self) -> ort.SessionOptions:
    """Generate session options from the current config."""
    session_options = ort.SessionOptions()

    if hasattr(self.config, "session_options") and self.config.session_options is not None:
        session_options_dict = cast(
            dict[str, Any], OmegaConf.to_container(self.config.session_options, resolve=True)
        )
        for key, value in session_options_dict.items():
            final_value = value
            if isinstance(value, dict) and "_target_" in value:
                final_value = instantiate(final_value)

            setattr(session_options, key, final_value)

    return session_options

half()

Convert model to half precision.

Source code in quadra/models/evaluation.py
312
313
314
def half(self):
    """Convert model to half precision."""
    raise NotImplementedError("At the moment ONNX models do not support half method.")

load_from_disk(model_path, device='cpu')

Load model from disk.

Source code in quadra/models/evaluation.py
274
275
276
277
278
279
280
281
282
def load_from_disk(self, model_path: str, device: str = "cpu"):
    """Load model from disk."""
    self.model_path = model_path
    self.device = device

    ort_providers = self._get_providers(device)
    self.model = ort.InferenceSession(self.model_path, providers=ort_providers, sess_options=self.session_options)
    self.model_dtype = self.cast_onnx_dtype(self.model.get_inputs()[0].type)
    self.is_loaded = True

to(device)

Move model to device.

Source code in quadra/models/evaluation.py
302
303
304
305
306
def to(self, device: str):
    """Move model to device."""
    self.device = device
    ort_providers = self._get_providers(device)
    self.model.set_providers(ort_providers)

TorchEvaluationModel(config, model_architecture)

Bases: TorchscriptEvaluationModel

Wrapper for torch models.

Parameters:

  • model_architecture (Module) –

    Optional torch model architecture

Source code in quadra/models/evaluation.py
134
135
136
137
138
139
def __init__(self, config: DictConfig, model_architecture: nn.Module) -> None:
    super().__init__(config=config)
    self.model = model_architecture
    self.model.eval()
    device = next(self.model.parameters()).device
    self.device = str(device)

load_from_disk(model_path, device='cpu')

Load model from disk.

Source code in quadra/models/evaluation.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def load_from_disk(self, model_path: str, device: str = "cpu"):
    """Load model from disk."""
    self.model_path = model_path
    self.device = device
    self.model.load_state_dict(torch.load(self.model_path))
    self.model.eval()
    self.model.to(self.device)

    parameter_types = {param.dtype for param in self.model.parameters()}
    if len(parameter_types) == 2:
        # TODO: There could be models with mixed precision?
        raise ValueError(f"Expected only one type of parameters, found {parameter_types}")

    self.model_dtype = list(parameter_types)[0]
    self.is_loaded = True

TorchscriptEvaluationModel

Bases: BaseEvaluationModel

Wrapper for torchscript models.

training: bool property

Return whether model is in training mode.

cpu()

Move model to cpu.

Source code in quadra/models/evaluation.py
122
123
124
def cpu(self):
    """Move model to cpu."""
    self.model.cpu()

eval()

Set model to evaluation mode.

Source code in quadra/models/evaluation.py
109
110
111
def eval(self):
    """Set model to evaluation mode."""
    self.model.eval()

half()

Convert model to half precision.

Source code in quadra/models/evaluation.py
118
119
120
def half(self):
    """Convert model to half precision."""
    self.model.half()

load_from_disk(model_path, device='cpu')

Load model from disk.

Source code in quadra/models/evaluation.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def load_from_disk(self, model_path: str, device: str = "cpu"):
    """Load model from disk."""
    self.model_path = model_path
    self.device = device

    model = cast(RecursiveScriptModule, torch.jit.load(self.model_path))
    model.eval()
    model.to(self.device)

    parameter_types = {param.dtype for param in model.parameters()}
    if len(parameter_types) == 2:
        # TODO: There could be models with mixed precision?
        raise ValueError(f"Expected only one type of parameters, found {parameter_types}")

    self.model_dtype = list(parameter_types)[0]
    self.model = model
    self.is_loaded = True

to(device)

Move model to device.

Source code in quadra/models/evaluation.py
104
105
106
107
def to(self, device: str):
    """Move model to device."""
    self.model.to(device)
    self.device = device