classification
SklearnClassificationTrainer(input_shape, backbone, random_state=42, classifier=LogisticRegression, iteration_over_training=1)
¶
Class to configure and run a classification using torch for feature extraction and sklearn to fit a classifier.
Parameters:
-
input_shape
(
list
) –[H, W, C]
-
random_state
(
int
, default:42
) –seed to fix randomness
-
classifier
(
ClassifierMixin
, default:LogisticRegression
) –classification model
-
iteration_over_training
(
int
, default:1
) –the number of iteration over training during feature extraction
-
backbone
(
Module
) –the feature extractor
Source code in quadra/trainers/classification.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
change_backbone(backbone)
¶
Update feature extractor.
Source code in quadra/trainers/classification.py
52 53 54 55 |
|
change_classifier(classifier)
¶
Update classifier.
Source code in quadra/trainers/classification.py
57 58 59 |
|
fit(train_dataloader=None, train_features=None, train_labels=None)
¶
Fit classifier on training set.
Source code in quadra/trainers/classification.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
test(test_dataloader, test_labels=None, test_features=None, class_to_keep=None, idx_to_class=None, predict_proba=True, gradcam=False)
¶
Test classifier on test set.
Parameters:
-
test_dataloader
(
DataLoader
) –Test dataloader
-
test_labels
(
ndarray | None
, default:None
) –test labels
-
test_features
(
ndarray | None
, default:None
) –Optional test features used when cache data is available
-
class_to_keep
(
list[int] | None
, default:None
) –list of class to keep
-
idx_to_class
(
dict[int, str] | None
, default:None
) –dictionary mapping class index to class name
-
predict_proba
(
bool
, default:True
) –if True, predict also probability for each test image
-
gradcam
(
bool
, default:False
) –Whether to compute gradcam
Returns:
-
cl_rep (
tuple[str | dict, DataFrame, float, DataFrame, ndarray | None] | tuple[None, None, None, DataFrame, ndarray | None]
) –Classification report
-
pd_cm (
tuple[str | dict, DataFrame, float, DataFrame, ndarray | None] | tuple[None, None, None, DataFrame, ndarray | None]
) –Confusion matrix dataframe
-
accuracy (
tuple[str | dict, DataFrame, float, DataFrame, ndarray | None] | tuple[None, None, None, DataFrame, ndarray | None]
) –Test accuracy
-
res (
tuple[str | dict, DataFrame, float, DataFrame, ndarray | None] | tuple[None, None, None, DataFrame, ndarray | None]
) –Test results
-
cams (
tuple[str | dict, DataFrame, float, DataFrame, ndarray | None] | tuple[None, None, None, DataFrame, ndarray | None]
) –Gradcams
Source code in quadra/trainers/classification.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
|