patch
RleEncoder
¶
Bases: JSONEncoder
Custom encoder to convert numpy arrays to RLE.
default(o)
¶
Customize standard encoder behaviour to convert numpy arrays to RLE.
Source code in quadra/utils/patch/model.py
149 150 151 152 153 |
|
compute_patch_metrics(test_img_info, test_results, overlap, idx_to_class, patch_num_h=None, patch_num_w=None, patch_w=None, patch_h=None, return_polygon=False, patch_reconstruction_method='priority', annotated_good=None)
¶
Compute the metrics of a patch dataset.
Parameters:
-
test_img_info
(
list[PatchDatasetFileFormat]
) –List of observation paths and mask paths
-
test_results
(
DataFrame
) –Pandas dataframe containing the results of an SklearnClassificationTrainer utility
-
patch_num_h
(
int | None
, default:None
) –Number of vertical patches (required if patch_w and patch_h are None)
-
patch_num_w
(
int | None
, default:None
) –Number of horizontal patches (required if patch_w and patch_h are None)
-
patch_h
(
int | None
, default:None
) –Patch height (required if patch_num_h and patch_num_w are None)
-
patch_w
(
int | None
, default:None
) –Patch width (required if patch_num_h and patch_num_w are None)
-
overlap
(
float
) –Percentage of overlap between the patches
-
idx_to_class
(
dict
) –Dict mapping an index to the corresponding class name
-
return_polygon
(
bool
, default:False
) –if set to true convert the reconstructed mask into polygons, otherwise return the mask
-
patch_reconstruction_method
(
str
, default:'priority'
) –How to compute the label of overlapping patches, can either be: priority: Assign the top priority label (i.e the one with greater index) to overlapping regions major_voting: Assign the most present label among the patches label overlapping a pixel
-
annotated_good
(
list[int] | None
, default:None
) –List of indices of annotations to be treated as good.
Returns:
-
tuple[int, int, int, list[dict]]
–Tuple containing: false_region_bad: Number of false bad regions detected in the dataset false_region_good: Number of missed defects true_region_bad: Number of correctly identified defects reconstructions: If polygon is true this is a List of dict containing { "file_path": image_path, "mask_path": mask_path, "file_name": observation_name, "prediction": [{ "label": predicted_label, "points": List of dict coordinates "x" and "y" representing the points of a polygon that surrounds an image area covered by patches of label = predicted_label }] } else its a list of dict containing { "file_path": image_path, "mask_path": mask_path, "file_name": observation_name, "prediction": numpy array containing the reconstructed mask }
Source code in quadra/utils/patch/metrics.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
|
generate_patch_dataset(data_dictionary, class_to_idx, val_size=0.3, test_size=0.0, seed=42, patch_number=None, patch_size=None, overlap=0.0, output_folder='extraction_data', save_original_images_and_masks=True, area_threshold=0.45, area_defect_threshold=0.2, mask_extension='_mask', mask_output_folder=None, save_mask=False, clear_output_folder=False, mask_preprocessing=None, train_filename='dataset.txt', repeat_good_images=1, balance_defects=True, annotated_good=None, num_workers=1)
¶
Giving a data_dictionary as:
{ 'base_name': '163931_1_5.jpg', 'path': 'extraction_data/1/163931_1_5.jpg', 'mask': 'extraction_data/1/163931_1_5_mask.jpg' } This function will generate patches datasets based on the defined split number, one for training, one for validation and one for testing respectively under output_folder/train, output_folder/val and output_folder/test, the training dataset will contain h5 files and a txt file resulting from a call to the generate_classification_patch_train_dataset, while the test dataset will contain patches saved on disk divided in subfolders per class, patch extraction is done in a sliding window fashion. Original images and masks (preprocessed if mask_preprocessing is present) will also be saved under output_folder/original/images and output_folder/original/masks. If patch number is specified the patch size will be calculated accordingly, if the image is not divisible by the patch number two possible behaviours can occur: - if the patch reconstruction is smaller than the original image a new patch will be generated containing the pixels from the edge of the image (E.g the new patch will contain the last patch_size pixels of the original image) - if the patch reconstruction is bigger than the original image the last patch will contain the pixels from the edge of the image same as above, but without adding a new patch to the count.
Parameters:
-
data_dictionary
(
list[dict]
) –Dictionary as above
-
val_size
(
float
, default:0.3
) –percentage of the dictionary entries to be used for validation
-
test_size
(
float
, default:0.0
) –percentage of the dictionary entries to be used for testing
-
seed
(
int
, default:42
) –seed for rng based operations
-
clear_output_folder
(
bool
, default:False
) –flag used to delete all the data in subfolder
-
class_to_idx
(
dict
) –Dictionary {"defect": value in mask.. }
-
output_folder
(
str
, default:'extraction_data'
) –root_folder where to extract the data
-
save_original_images_and_masks
(
bool
, default:True
) –If True, images and masks will be copied inside output_folder/original/
-
area_threshold
(
float
, default:0.45
) –Minimum percentage of defected patch area present in the mask to classify the patch as defect
-
area_defect_threshold
(
float
, default:0.2
) –Minimum percentage of single defect present in the patch to classify the patch as defect
-
mask_extension
(
str
, default:'_mask'
) –Extension used to assign image to mask
-
mask_output_folder
(
str | None
, default:None
) –Optional folder in which to save the masks
-
save_mask
(
bool
, default:False
) –Flag to save the mask
-
patch_number
(
tuple[int, int] | None
, default:None
) –Optional number of patches for each side, required if patch_size is None
-
patch_size
(
tuple[int, int] | None
, default:None
) –Optional dimension of the patch, required if patch_number is None
-
overlap
(
float
, default:0.0
) –Overlap of the patches [0, 1]
-
mask_preprocessing
(
Callable | None
, default:None
) –Optional function applied to masks, this can be useful for example to convert an image in range [0-255] to the required [0-1]
-
train_filename
(
str
, default:'dataset.txt'
) –Name of the file containing mapping between h5 files and labels for training
-
repeat_good_images
(
int
, default:1
) –Number of repetition for images with emtpy or None mask
-
balance_defects
(
bool
, default:True
) –If true add one good entry for each defect extracted
-
annotated_good
(
list[str] | None
, default:None
) –List of labels that are annotated but considered as good
-
num_workers
(
int
, default:1
) –Number of workers used for the h5 creation
Returns:
-
dict | None
–None if data_dictionary is empty, otherwise return a dictionary containing informations about the dataset
Source code in quadra/utils/patch/dataset.py
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
|
get_image_mask_association(data_folder, mask_folder=None, mask_extension='', warning_on_missing_mask=True)
¶
Function used to match images and mask from a folder or sub-folders.
Parameters:
-
data_folder
(
str
) –root data folder containing images or images and masks
-
mask_folder
(
str | None
, default:None
) –Optional root directory used to search only the masks
-
mask_extension
(
str
, default:''
) –extension used to identify the mask file, it's mandatory if mask_folder is not specified warning_on_missing_mask: if set to True a warning will be raised if a mask is missing, disable if you know that many images do not have a mask.
-
warning_on_missing_mask
(
bool
, default:True
) –if set to True a warning will be raised if a mask is missing, disable if you know
Returns:
-
list[dict]
–List of dict like:
-
list[dict]
–[
-
list[dict]
–{ 'base_name': '161927.tiff', 'path': 'test_dataset_patch/images/161927.tiff', 'mask': 'test_dataset_patch/masks/161927_mask.tiff'
-
list[dict]
–}, ...
-
list[dict]
–]
Source code in quadra/utils/patch/dataset.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
|
plot_patch_reconstruction(reconstruction, idx_to_class, class_to_idx, ignore_classes=None, is_polygon=True)
¶
Helper function for plotting the patch reconstruction.
Parameters:
-
reconstruction
(
dict
) –Dict following this structure { "file_path": str, "mask_path": str, "prediction": { "label": str, "points": [{"x": int, "y": int}] } } if is_polygon else { "file_path": str, "mask_path": str, "prediction": np.ndarray }
-
idx_to_class
(
dict[int, str]
) –Dictionary mapping indices to label names
-
class_to_idx
(
dict[str, int]
) –Dictionary mapping class names to indices
-
ignore_classes
(
list[int] | None
, default:None
) –Eventually the classes to not plot
-
is_polygon
(
bool
, default:True
) –Boolean indicating if the prediction is a polygon or a mask.
Returns:
-
Figure
–Matplotlib plot showing predicted patch regions and eventually gt
Source code in quadra/utils/patch/visualization.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
plot_patch_results(image, prediction_image, ground_truth_image, class_to_idx, plot_original=True, ignore_classes=None, image_height=10, save_path=None, cmap=None)
¶
Function used to plot the image predicted.
Parameters:
-
prediction_image
(
ndarray
) –The prediction image
-
image
(
ndarray
) –The original image to plot
-
ground_truth_image
(
ndarray | None
) –The ground truth image
-
class_to_idx
(
dict[str, int]
) –Dictionary mapping class names to indices
-
plot_original
(
bool
, default:True
) –Boolean to plot the original image
-
ignore_classes
(
list[int] | None
, default:None
) –The classes to ignore, default is 0
-
image_height
(
int
, default:10
) –The height of the output figure
-
save_path
(
str | None
, default:None
) –The path to save the figure
-
cmap
(
Colormap | None
, default:None
) –The colormap to use. If None, tab20 is used
Returns:
-
Figure
–The matplotlib figure
Source code in quadra/utils/patch/visualization.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
|
reconstruct_patch(input_img_shape, patch_size, pred, patch_num_h, patch_num_w, idx_to_class, step, return_polygon=True, method='priority')
¶
Reconstructs the prediction image from the patches.
Parameters:
-
input_img_shape
(
tuple[int, ...]
) –The size of the reconstructed image
-
patch_size
(
tuple[int, int]
) –Array defining the patch size
-
pred
(
ndarray
) –Numpy array containing reconstructed prediction (patch_num_h x patch_num_w)
-
patch_num_h
(
int
) –Number of vertical patches
-
patch_num_w
(
int
) –Number of horizontal patches
-
idx_to_class
(
dict
) –Dictionary mapping indices to labels
-
step
(
tuple[int, int]
) –Array defining the step size to be used for reconstruction
-
return_polygon
(
bool
, default:True
) –If true compute predicted polygons. Defaults to True.
-
method
(
str
, default:'priority'
) –Reconstruction method to be used. Currently supported: "priority" and "major_voting"
Returns:
-
tuple[ndarray, list[dict]]
–(reconstructed_prediction_image, predictions) where predictions is an array of objects [{ "label": Predicted_label, "points": List of dict coordinates "x" and "y" representing the points of a polygon that surrounds an image area covered by patches of label = predicted_label }]
Source code in quadra/utils/patch/metrics.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
|
save_classification_result(results, output_folder, confusion_matrix, accuracy, test_dataloader, reconstructions, config, output, ignore_classes=None)
¶
Save classification results.
Parameters:
-
results
(
DataFrame
) –Dataframe containing the classification results
-
output_folder
(
str
) –Folder where to save the results
-
confusion_matrix
(
DataFrame | None
) –Confusion matrix
-
accuracy
(
float
) –Accuracy of the model
-
test_dataloader
(
DataLoader
) –Dataloader used for testing
-
reconstructions
(
list[dict]
) –List of dictionaries containing polygons or masks
-
config
(
DictConfig
) –Experiment configuration
-
output
(
DictConfig
) –Output configuration
-
ignore_classes
(
list[int] | None
, default:None
) –Eventual classes to ignore during reconstruction plot. Defaults to None.
Source code in quadra/utils/patch/model.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
|