classification
            ClassificationDataset(samples, targets, class_to_idx=None, resize=None, roi=None, transform=None, rgb=True, channel=3, random_padding=False, circular_crop=False)
¶
  
            Bases: ImageClassificationListDataset
Custom Classification Dataset.
Parameters:
- 
        samples
            (list[str]) –List of paths to images 
- 
        targets
            (list[str | int]) –List of targets 
- 
        class_to_idx
            (dict | None, default:None) –Defaults to None. 
- 
        resize
            (int | None, default:None) –Resize image to this size. Defaults to None. 
- 
        roi
            (tuple[int, int, int, int] | None, default:None) –Region of interest. Defaults to None. 
- 
        transform
            (Callable | None, default:None) –transform function. Defaults to None. 
- 
        rgb
            (bool, default:True) –Use RGB space 
- 
        channel
            (int, default:3) –Number of channels. Defaults to 3. 
- 
        random_padding
            (bool, default:False) –Random padding. Defaults to False. 
- 
        circular_crop
            (bool, default:False) –Circular crop. Defaults to False. 
Source code in quadra/datasets/classification.py
                | 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |  | 
            ImageClassificationListDataset(samples, targets, class_to_idx=None, resize=None, roi=None, transform=None, rgb=True, channel=3, allow_missing_label=False)
¶
  
            Bases: Dataset
Standard classification dataset.
Parameters:
- 
        samples
            (list[str]) –List of paths to images to be read 
- 
        targets
            (list[str | int]) –List of labels, one for every image in samples 
- 
        class_to_idx
            (dict | None, default:None) –mapping from classes to unique indexes. Defaults to None. 
- 
        resize
            (int | None, default:None) –Integer specifying the size of a first optional resize keeping the aspect ratio: the smaller side of the image will be resized to resize, while the longer will be resized keeping the aspect ratio. Defaults to None.
- 
        roi
            (tuple[int, int, int, int] | None, default:None) –Optional ROI, with (x_upper_left, y_upper_left, x_bottom_right, y_bottom_right). Defaults to None. 
- 
        transform
            (Callable | None, default:None) –Optional Albumentations transform. Defaults to None. 
- 
        rgb
            (bool, default:True) –if False, image will be converted in grayscale 
- 
        channel
            (int, default:3) –1 or 3. If rgb is True, then channel will be set at 3. 
- 
        allow_missing_label
            (bool | None, default:False) –If set to false warn the user if the dataset contains missing labels 
Source code in quadra/datasets/classification.py
                | 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |  | 
            MultilabelClassificationDataset(samples, targets, class_to_idx=None, transform=None, rgb=True)
¶
  
            Bases: Dataset
Custom MultilabelClassification Dataset.
Parameters:
- 
        samples
            (list[str]) –list of paths to images. 
- 
        targets
            (ndarray) –array of multiple targets per sample. The array must be a one-hot enoding. It must have a shape of (n_samples, n_targets). 
- 
        class_to_idx
            (dict | None, default:None) –Defaults to None. 
- 
        transform
            (Callable | None, default:None) –transform function. Defaults to None. 
- 
        rgb
            (bool, default:True) –Use RGB space 
Source code in quadra/datasets/classification.py
                | 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |  |