Skip to content

segmentation

SegmentationDataModule(data_path, name='segmentation_datamodule', test_size=0.3, val_size=0.3, seed=42, dataset=SegmentationDataset, batch_size=32, num_workers=6, train_transform=None, test_transform=None, val_transform=None, train_split_file=None, test_split_file=None, val_split_file=None, num_data_class=None, exclude_good=False, **kwargs)

Bases: BaseDataModule

Base class for segmentation datasets.

Parameters:

  • data_path (str) –

    Path to the data main folder.

  • name (str, default: 'segmentation_datamodule' ) –

    The name for the data module. Defaults to "segmentation_datamodule".

  • val_size (float, default: 0.3 ) –

    The validation split. Defaults to 0.2.

  • test_size (float, default: 0.3 ) –

    The test split. Defaults to 0.2.

  • seed (int, default: 42 ) –

    Random generator seed. Defaults to 42.

  • dataset (type[SegmentationDataset], default: SegmentationDataset ) –

    Dataset class.

  • batch_size (int, default: 32 ) –

    Batch size. Defaults to 32.

  • num_workers (int, default: 6 ) –

    Number of workers for dataloaders. Defaults to 16.

  • train_transform (Compose | None, default: None ) –

    Transformations for train dataset. Defaults to None.

  • val_transform (Compose | None, default: None ) –

    Transformations for validation dataset. Defaults to None.

  • test_transform (Compose | None, default: None ) –

    Transformations for test dataset. Defaults to None.

  • num_data_class (int | None, default: None ) –

    The number of samples per class. Defaults to None.

  • exclude_good (bool, default: False ) –

    If True, exclude good samples from the dataset. Defaults to False.

Source code in quadra/datamodules/segmentation.py
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
def __init__(
    self,
    data_path: str,
    name: str = "segmentation_datamodule",
    test_size: float = 0.3,
    val_size: float = 0.3,
    seed: int = 42,
    dataset: type[SegmentationDataset] = SegmentationDataset,
    batch_size: int = 32,
    num_workers: int = 6,
    train_transform: albumentations.Compose | None = None,
    test_transform: albumentations.Compose | None = None,
    val_transform: albumentations.Compose | None = None,
    train_split_file: str | None = None,
    test_split_file: str | None = None,
    val_split_file: str | None = None,
    num_data_class: int | None = None,
    exclude_good: bool = False,
    **kwargs: Any,
):
    super().__init__(
        data_path=data_path,
        name=name,
        seed=seed,
        batch_size=batch_size,
        num_workers=num_workers,
        train_transform=train_transform,
        val_transform=val_transform,
        test_transform=test_transform,
        **kwargs,
    )
    self.test_size = test_size
    self.val_size = val_size
    self.num_data_class = num_data_class
    self.exclude_good = exclude_good
    self.train_split_file = train_split_file
    self.test_split_file = test_split_file
    self.val_split_file = val_split_file
    self.dataset = dataset
    self.train_dataset: SegmentationDataset
    self.val_dataset: SegmentationDataset
    self.test_dataset: SegmentationDataset

_prepare_data()

Prepare data for training and testing.

Source code in quadra/datamodules/segmentation.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
def _prepare_data(self) -> None:
    """Prepare data for training and testing."""
    if not (self.test_split_file and self.train_split_file and self.val_split_file):
        all_samples, all_targets, all_masks = self._read_folder(self.data_path)
        samples_train, samples_test, targets_train, targets_test, masks_train, masks_test = train_test_split(
            all_samples,
            all_targets,
            all_masks,
            test_size=self.test_size,
            random_state=self.seed,
            stratify=all_targets,
        )
    if self.test_split_file:
        samples_test, targets_test, masks_test = self._read_split(self.test_split_file)
        if not self.train_split_file:
            samples_train, targets_train, masks_train = [], [], []
            for sample, target, mask in zip(all_samples, all_targets, all_masks, strict=False):
                if sample not in samples_test:
                    samples_train.append(sample)
                    targets_train.append(target)
                    masks_train.append(mask)

    if self.train_split_file:
        samples_train, targets_train, masks_train = self._read_split(self.train_split_file)
        if not self.test_split_file:
            samples_test, targets_test, masks_test = [], [], []
            for sample, target, mask in zip(all_samples, all_targets, all_masks, strict=False):
                if sample not in samples_train:
                    samples_test.append(sample)
                    targets_test.append(target)
                    masks_test.append(mask)

    if self.val_split_file:
        if not self.test_split_file or not self.train_split_file:
            raise ValueError("Validation split file is specified but no train or test split file is specified.")
        samples_val, targets_val, masks_val = self._read_split(self.val_split_file)
    else:
        samples_train, samples_val, targets_train, targets_val, masks_train, masks_val = train_test_split(
            samples_train,
            targets_train,
            masks_train,
            test_size=self.val_size,
            random_state=self.seed,
            stratify=targets_train,
        )

    if self.exclude_good:
        samples_train = list(np.array(samples_train)[np.array(targets_train) != 0])
        masks_train = list(np.array(masks_train)[np.array(targets_train) != 0])
        targets_train = list(np.array(targets_train)[np.array(targets_train) != 0])

    if self.num_data_class is not None:
        samples_train_topick = []
        targets_train_topick = []
        masks_train_topick = []

        for cl in np.unique(targets_train):
            idx = np.where(np.array(targets_train) == cl)[0].tolist()
            random.seed(self.seed)
            random.shuffle(idx)
            to_pick = idx[: self.num_data_class]
            for i in to_pick:
                samples_train_topick.append(samples_train[i])
                targets_train_topick.append(cl)
                masks_train_topick.append(masks_train[i])

        samples_train = samples_train_topick
        targets_train = targets_train_topick
        masks_train = masks_train_topick

    df_list = []
    for split_name, samples, targets, masks in [
        ("train", samples_train, targets_train, masks_train),
        ("val", samples_val, targets_val, masks_val),
        ("test", samples_test, targets_test, masks_test),
    ]:
        df = pd.DataFrame({"samples": samples, "targets": targets, "masks": masks})
        df["split"] = split_name
        df_list.append(df)

    self.data = pd.concat(df_list, axis=0)

_preprocess_mask(mask)

Binarize mask using 0 as threshold.

Source code in quadra/datamodules/segmentation.py
89
90
91
92
def _preprocess_mask(self, mask) -> np.ndarray:
    """Binarize mask using 0 as threshold."""
    mask = (mask > 0).astype(np.uint8)
    return mask

_read_folder(data_path)

Read a folder containing images and masks subfolders.

Parameters:

  • data_path (str) –

    Path to the data folder.

Returns:

  • tuple[list[str], list[int], list[str]]

    List of paths to the images, associated binary targets and list to paths to the masks.

Source code in quadra/datamodules/segmentation.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def _read_folder(self, data_path: str) -> tuple[list[str], list[int], list[str]]:
    """Read a folder containing images and masks subfolders.

    Args:
        data_path: Path to the data folder.

    Returns:
        List of paths to the images, associated binary targets and list to paths to the masks.
    """
    samples = []
    targets = []
    masks = []

    for im in glob.glob(os.path.join(data_path, "images", "*")):
        if im[0] == ".":
            continue

        mask_path = glob.glob(os.path.splitext(im.replace("images", "masks"))[0] + ".*")

        if len(mask_path) == 0:
            log.debug("Mask not found: %s", os.path.basename(im))
            continue

        if len(mask_path) > 1:
            raise ValueError(f"Multiple masks found for image: {os.path.basename(im)}, this is not supported")

        target = self._resolve_label(mask_path[0])
        samples.append(im)
        targets.append(target)
        masks.append(mask_path[0])

    return samples, targets, masks

_read_split(split_file)

Reads split file.

Parameters:

  • split_file (str) –

    Path to the split file.

Returns:

Source code in quadra/datamodules/segmentation.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def _read_split(self, split_file: str) -> tuple[list[str], list[int], list[str]]:
    """Reads split file.

    Args:
        split_file: Path to the split file.

    Returns:
        List of paths to images, List of labels.
    """
    samples, targets, masks = [], [], []
    with open(split_file) as f:
        split = f.read().splitlines()
    for sample in split:
        sample_path = os.path.join(self.data_path, sample)
        mask_path = glob.glob(os.path.splitext(sample_path.replace("images", "masks"))[0] + ".*")

        if len(mask_path) == 0:
            log.debug("Mask not found: %s", os.path.basename(sample_path))
            continue

        if len(mask_path) > 1:
            raise ValueError(
                f"Multiple masks found for image: {os.path.basename(sample_path)}, this is not supported"
            )

        target = self._resolve_label(mask_path[0])
        samples.append(sample_path)
        targets.append(target)
        masks.append(mask_path[0])

    return samples, targets, masks

_resolve_label(path) staticmethod

Resolve label from mask.

Parameters:

  • path (str) –

    Path to the mask.

Returns:

  • int

    0 if the mask is empty, 1 otherwise

Source code in quadra/datamodules/segmentation.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
@staticmethod
def _resolve_label(path: str) -> int:
    """Resolve label from mask.

    Args:
        path: Path to the mask.

    Returns:
        0 if the mask is empty, 1 otherwise
    """
    if cv2.imread(path).sum() == 0:
        return 0

    return 1

predict_dataloader()

Returns a dataloader used for predictions.

Source code in quadra/datamodules/segmentation.py
365
366
367
def predict_dataloader(self) -> DataLoader:
    """Returns a dataloader used for predictions."""
    return self.test_dataloader()

setup(stage=None)

Setup data module based on stages of training.

Source code in quadra/datamodules/segmentation.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
def setup(self, stage=None):
    """Setup data module based on stages of training."""
    if stage in ["fit", "train"]:
        self.train_dataset = self.dataset(
            image_paths=self.data[self.data["split"] == "train"]["samples"].tolist(),
            mask_paths=self.data[self.data["split"] == "train"]["masks"].tolist(),
            mask_preprocess=self._preprocess_mask,
            labels=self.data[self.data["split"] == "train"]["targets"].tolist(),
            object_masks=None,
            transform=self.train_transform,
            batch_size=None,
            defect_transform=None,
            resize=None,
        )
        self.val_dataset = self.dataset(
            image_paths=self.data[self.data["split"] == "val"]["samples"].tolist(),
            mask_paths=self.data[self.data["split"] == "val"]["masks"].tolist(),
            defect_transform=None,
            labels=self.data[self.data["split"] == "val"]["targets"].tolist(),
            object_masks=None,
            batch_size=None,
            mask_preprocess=self._preprocess_mask,
            transform=self.test_transform,
            resize=None,
        )
    elif stage == "test":
        self.test_dataset = self.dataset(
            image_paths=self.data[self.data["split"] == "test"]["samples"].tolist(),
            mask_paths=self.data[self.data["split"] == "test"]["masks"].tolist(),
            labels=self.data[self.data["split"] == "test"]["targets"].tolist(),
            object_masks=None,
            batch_size=None,
            mask_preprocess=self._preprocess_mask,
            transform=self.test_transform,
            resize=None,
        )
    elif stage == "predict":
        pass
    else:
        raise ValueError(f"Unknown stage {stage}")

test_dataloader()

Returns the test dataloader.

Raises:

  • ValueError

    If test dataset is not initialized.

Returns:

Source code in quadra/datamodules/segmentation.py
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def test_dataloader(self) -> DataLoader:
    """Returns the test dataloader.

    Raises:
        ValueError: If test dataset is not initialized.


    Returns:
        test dataloader.
    """
    if not self.test_dataset_available:
        raise ValueError("Test dataset is not initialized")

    loader = DataLoader(
        self.test_dataset,
        batch_size=self.batch_size,
        shuffle=False,
        num_workers=self.num_workers,
        drop_last=False,
        pin_memory=True,
        persistent_workers=self.num_workers > 0,
    )
    return loader

train_dataloader()

Returns the train dataloader.

Raises:

  • ValueError

    If train dataset is not initialized.

Returns:

Source code in quadra/datamodules/segmentation.py
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
def train_dataloader(self) -> DataLoader:
    """Returns the train dataloader.

    Raises:
        ValueError: If train dataset is not initialized.

    Returns:
        Train dataloader.
    """
    if not self.train_dataset_available:
        raise ValueError("Train dataset is not initialized")

    return DataLoader(
        self.train_dataset,
        batch_size=self.batch_size,
        shuffle=True,
        num_workers=self.num_workers,
        drop_last=False,
        pin_memory=True,
        persistent_workers=self.num_workers > 0,
    )

val_dataloader()

Returns the validation dataloader.

Raises:

  • ValueError

    If validation dataset is not initialized.

Returns:

Source code in quadra/datamodules/segmentation.py
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
def val_dataloader(self) -> DataLoader:
    """Returns the validation dataloader.

    Raises:
        ValueError: If validation dataset is not initialized.

    Returns:
        val dataloader.
    """
    if not self.val_dataset_available:
        raise ValueError("Validation dataset is not initialized")

    return DataLoader(
        self.val_dataset,
        batch_size=self.batch_size,
        shuffle=False,
        num_workers=self.num_workers,
        drop_last=False,
        pin_memory=True,
        persistent_workers=self.num_workers > 0,
    )

SegmentationMulticlassDataModule(data_path, idx_to_class, name='multiclass_segmentation_datamodule', dataset=SegmentationDatasetMulticlass, batch_size=32, test_size=0.3, val_size=0.3, seed=42, num_workers=6, train_transform=None, test_transform=None, val_transform=None, train_split_file=None, test_split_file=None, val_split_file=None, exclude_good=False, num_data_train=None, one_hot_encoding=False, **kwargs)

Bases: BaseDataModule

Base class for segmentation datasets with multiple classes.

Parameters:

  • data_path

    Path to the data main folder.

  • idx_to_class (dict) –

    dict with corrispondence btw mask index and classes: {1: class_1, 2: class_2, ..., N: class_N} except background class which is 0.

  • name

    The name for the data module. Defaults to "multiclass_segmentation_datamodule".

  • dataset (type[SegmentationDatasetMulticlass], default: SegmentationDatasetMulticlass ) –

    Dataset class.

  • batch_size

    Batch size. Defaults to 32.

  • val_size

    The validation split. Defaults to 0.3.

  • test_size

    The test split. Defaults to 0.3.

  • seed

    Random generator seed. Defaults to 42.

  • num_workers (int, default: 6 ) –

    Number of workers for dataloaders. Defaults to 6.

  • train_transform (Compose | None, default: None ) –

    Transformations for train dataset. Defaults to None.

  • val_transform

    Transformations for validation dataset. Defaults to None.

  • test_transform

    Transformations for test dataset. Defaults to None.

  • train_split_file (str | None, default: None ) –

    path to txt file with training samples list

  • val_split_file (str | None, default: None ) –

    path to txt file with validation samples list

  • test_split_file (str | None, default: None ) –

    path to txt file with test samples list

  • exclude_good

    If True, exclude good samples from the dataset. Defaults to False.

  • num_data_train (int | None, default: None ) –

    number of samples to use in the train split (shuffle the samples and pick the first num_data_train)

  • one_hot_encoding (bool, default: False ) –

    if True, the labels are one-hot encoded to N channels, where N is the number of classes. If False, masks are single channel that contains values as class indexes. Defaults to True.

Source code in quadra/datamodules/segmentation.py
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
def __init__(
    self,
    data_path: str,
    idx_to_class: dict,
    name: str = "multiclass_segmentation_datamodule",
    dataset: type[SegmentationDatasetMulticlass] = SegmentationDatasetMulticlass,
    batch_size: int = 32,
    test_size: float = 0.3,
    val_size: float = 0.3,
    seed: int = 42,
    num_workers: int = 6,
    train_transform: albumentations.Compose | None = None,
    test_transform: albumentations.Compose | None = None,
    val_transform: albumentations.Compose | None = None,
    train_split_file: str | None = None,
    test_split_file: str | None = None,
    val_split_file: str | None = None,
    exclude_good: bool = False,
    num_data_train: int | None = None,
    one_hot_encoding: bool = False,
    **kwargs: Any,
):
    super().__init__(
        data_path=data_path,
        name=name,
        seed=seed,
        batch_size=batch_size,
        num_workers=num_workers,
        train_transform=train_transform,
        val_transform=val_transform,
        test_transform=test_transform,
        **kwargs,
    )
    self.test_size = test_size
    self.val_size = val_size
    self.exclude_good = exclude_good
    self.train_split_file = train_split_file
    self.test_split_file = test_split_file
    self.val_split_file = val_split_file
    self.dataset = dataset
    self.idx_to_class = idx_to_class
    self.num_data_train = num_data_train
    self.one_hot_encoding = one_hot_encoding
    self.train_dataset: SegmentationDataset
    self.val_dataset: SegmentationDataset
    self.test_dataset: SegmentationDataset

_prepare_data()

Prepare data for training and testing.

Source code in quadra/datamodules/segmentation.py
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
def _prepare_data(self) -> None:
    """Prepare data for training and testing."""
    if not (self.train_split_file and self.test_split_file and self.val_split_file):
        all_samples, all_targets, all_masks = self._read_folder(self.data_path)

        (
            samples_and_masks_train,
            targets_train,
            samples_and_masks_test,
            targets_test,
        ) = iterative_train_test_split(
            np.expand_dims(np.array(list(zip(all_samples, all_masks, strict=False))), 1),
            np.array(all_targets),
            test_size=self.test_size,
        )

        samples_train, samples_test = samples_and_masks_train[:, 0, 0], samples_and_masks_test[:, 0, 0]
        masks_train, masks_test = samples_and_masks_train[:, 0, 1], samples_and_masks_test[:, 0, 1]

    if self.test_split_file:
        samples_test, targets_test, masks_test = self._read_split(self.test_split_file)
        if not self.train_split_file:
            samples_train, targets_train, masks_train = [], [], []
            for sample, target, mask in zip(all_samples, all_targets, all_masks, strict=False):
                if sample not in samples_test:
                    samples_train.append(sample)
                    targets_train.append(target)
                    masks_train.append(mask)

    if self.train_split_file:
        samples_train, targets_train, masks_train = self._read_split(self.train_split_file)
        if not self.test_split_file:
            samples_test, targets_test, masks_test = [], [], []
            for sample, target, mask in zip(all_samples, all_targets, all_masks, strict=False):
                if sample not in samples_train:
                    samples_test.append(sample)
                    targets_test.append(target)
                    masks_test.append(mask)

    if self.val_split_file:
        samples_val, targets_val, masks_val = self._read_split(self.val_split_file)
        if not self.test_split_file or not self.train_split_file:
            raise ValueError("Validation split file is specified but no train or test split file is specified.")
    else:
        samples_and_masks_train, targets_train, samples_and_masks_val, targets_val = iterative_train_test_split(
            np.expand_dims(np.array(list(zip(samples_train, masks_train, strict=False))), 1),
            np.array(targets_train),
            test_size=self.val_size,
        )
        samples_train = samples_and_masks_train[:, 0, 0]
        samples_val = samples_and_masks_val[:, 0, 0]
        masks_train = samples_and_masks_train[:, 0, 1]
        masks_val = samples_and_masks_val[:, 0, 1]

    # Pre-ordering train and val samples for determinism
    # They will be shuffled (with a seed) during training
    sorting_indices_train = np.argsort(list(samples_train))
    samples_train = [samples_train[i] for i in sorting_indices_train]
    targets_train = [targets_train[i] for i in sorting_indices_train]
    masks_train = [masks_train[i] for i in sorting_indices_train]

    sorting_indices_val = np.argsort(samples_val)
    samples_val = [samples_val[i] for i in sorting_indices_val]
    targets_val = [targets_val[i] for i in sorting_indices_val]
    masks_val = [masks_val[i] for i in sorting_indices_val]

    if self.exclude_good:
        samples_train = list(np.array(samples_train)[np.array(targets_train)[:, 0] == 0])
        masks_train = list(np.array(masks_train)[np.array(targets_train)[:, 0] == 0])
        targets_train = list(np.array(targets_train)[np.array(targets_train)[:, 0] == 0])

    if self.num_data_train is not None:
        # Generate a random permutation
        random_permutation = list(range(len(samples_train)))
        random.seed(self.seed)
        random.shuffle(random_permutation)

        # Shuffle samples_train, targets_train, and masks_train using the same permutation
        samples_train = [samples_train[i] for i in random_permutation]
        targets_train = [targets_train[i] for i in random_permutation]
        masks_train = [masks_train[i] for i in random_permutation]

        samples_train = np.array(samples_train)[: self.num_data_train]
        targets_train = np.array(targets_train)[: self.num_data_train]
        masks_train = np.array(masks_train)[: self.num_data_train]

    df_list = []
    for split_name, samples, targets, masks in [
        ("train", samples_train, targets_train, masks_train),
        ("val", samples_val, targets_val, masks_val),
        ("test", samples_test, targets_test, masks_test),
    ]:
        df = pd.DataFrame({"samples": samples, "targets": list(targets), "masks": masks})
        df["split"] = split_name
        df_list.append(df)

    self.data = pd.concat(df_list, axis=0)

_preprocess_mask(mask)

Function to preprocess the mask.

Parameters:

  • mask (ndarray) –

    a numpy array of dimension HxW with values in [0] + self.idx_to_class.

Output

a binary numpy array with dims len(self.idx_to_class+1)xHxW

Source code in quadra/datamodules/segmentation.py
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
def _preprocess_mask(self, mask: np.ndarray) -> np.ndarray:
    """Function to preprocess the mask.

    Args:
        mask: a numpy array of dimension HxW with values in [0] + self.idx_to_class.

    Output:
        a binary numpy array with dims len(self.idx_to_class+1)xHxW
    """
    # For each class we must have a channel
    multilayer_mask = np.zeros((len(self.idx_to_class) + 1, *mask.shape[:2]))
    for idx in self.idx_to_class:
        multilayer_mask[int(idx)] = (mask == int(idx)).astype(np.uint8)

    return multilayer_mask

_read_folder(data_path)

Read a folder containing images and masks subfolders.

Parameters:

  • data_path (str) –

    Path to the data folder.

Returns:

Source code in quadra/datamodules/segmentation.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def _read_folder(self, data_path: str) -> tuple[list[str], list[np.ndarray], list[str]]:
    """Read a folder containing images and masks subfolders.

    Args:
        data_path: Path to the data folder.

    Returns:
        List of paths to the images, list of associated one-hot encoded targets and list of mask paths.
    """
    samples = []
    targets = []
    masks = []

    for im in glob.glob(os.path.join(data_path, "images", "*")):
        if im[0] == ".":
            continue

        mask_path = glob.glob(os.path.splitext(im.replace("images", "masks"))[0] + ".*")

        if len(mask_path) == 0:
            log.debug("Mask not found: %s", os.path.basename(im))
            continue

        if len(mask_path) > 1:
            raise ValueError(f"Multiple masks found for image: {os.path.basename(im)}, this is not supported")

        target = self._resolve_label(mask_path[0])
        samples.append(im)
        targets.append(target)
        masks.append(mask_path[0])

    return samples, targets, masks

_read_split(split_file)

Reads split file.

Parameters:

  • split_file (str) –

    Path to the split file.

Returns:

Source code in quadra/datamodules/segmentation.py
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
def _read_split(self, split_file: str) -> tuple[list[str], list[np.ndarray], list[str]]:
    """Reads split file.

    Args:
        split_file: Path to the split file.

    Returns:
        List of paths to images, labels and mask paths.
    """
    samples, targets, masks = [], [], []
    with open(split_file) as f:
        split = f.read().splitlines()
    for sample in split:
        sample_path = os.path.join(self.data_path, sample)
        mask_path = glob.glob(os.path.splitext(sample_path.replace("images", "masks"))[0] + ".*")

        if len(mask_path) == 0:
            log.debug("Mask not found: %s", os.path.basename(sample_path))
            continue

        if len(mask_path) > 1:
            raise ValueError(
                f"Multiple masks found for image: {os.path.basename(sample_path)}, this is not supported"
            )

        target = self._resolve_label(mask_path[0])
        samples.append(sample_path)
        targets.append(target)
        masks.append(mask_path[0])

    return samples, targets, masks

_resolve_label(path)

Return a binary array of 1 + len(self.idx_to_class) with 1 if that class is present in the mask.

Source code in quadra/datamodules/segmentation.py
463
464
465
466
467
468
469
470
471
472
473
474
def _resolve_label(self, path: str) -> np.ndarray:
    """Return a binary array of 1 + len(self.idx_to_class) with 1 if that class is present in the mask."""
    one_hot = np.zeros([len(self.idx_to_class) + 1], np.uint8)  # add class 0
    mask = cv2.imread(path, 0)
    if mask.sum() == 0:
        one_hot[0] = 1
    else:
        indices = np.unique(mask)
        one_hot[indices] = 1
        one_hot[0] = 0

    return one_hot

predict_dataloader()

Returns a dataloader used for predictions.

Source code in quadra/datamodules/segmentation.py
740
741
742
def predict_dataloader(self) -> DataLoader:
    """Returns a dataloader used for predictions."""
    return self.test_dataloader()

setup(stage=None)

Setup data module based on stages of training.

Source code in quadra/datamodules/segmentation.py
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
def setup(self, stage=None):
    """Setup data module based on stages of training."""
    if stage in ["fit", "train"]:
        train_data = self.data[self.data["split"] == "train"]
        val_data = self.data[self.data["split"] == "val"]

        self.train_dataset = self.dataset(
            image_paths=train_data["samples"].tolist(),
            mask_paths=train_data["masks"].tolist(),
            idx_to_class=self.idx_to_class,
            transform=self.train_transform,
            one_hot=self.one_hot_encoding,
        )
        self.val_dataset = self.dataset(
            image_paths=val_data["samples"].tolist(),
            mask_paths=val_data["masks"].tolist(),
            transform=self.val_transform,
            idx_to_class=self.idx_to_class,
            one_hot=self.one_hot_encoding,
        )
    elif stage == "test":
        self.test_dataset = self.dataset(
            image_paths=self.data[self.data["split"] == "test"]["samples"].tolist(),
            mask_paths=self.data[self.data["split"] == "test"]["masks"].tolist(),
            transform=self.test_transform,
            idx_to_class=self.idx_to_class,
            one_hot=self.one_hot_encoding,
        )
    elif stage == "predict":
        pass
    else:
        raise ValueError(f"Unknown stage {stage}")

test_dataloader()

Returns the test dataloader.

Raises:

  • ValueError

    If test dataset is not initialized.

Returns:

Source code in quadra/datamodules/segmentation.py
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
def test_dataloader(self) -> DataLoader:
    """Returns the test dataloader.

    Raises:
        ValueError: If test dataset is not initialized.


    Returns:
        test dataloader.
    """
    if not self.test_dataset_available:
        raise ValueError("Test dataset is not initialized")

    loader = DataLoader(
        self.test_dataset,
        batch_size=self.batch_size,
        shuffle=False,
        num_workers=self.num_workers,
        drop_last=False,
        pin_memory=True,
        persistent_workers=self.num_workers > 0,
    )
    return loader

train_dataloader()

Returns the train dataloader.

Raises:

  • ValueError

    If train dataset is not initialized.

Returns:

Source code in quadra/datamodules/segmentation.py
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
def train_dataloader(self) -> DataLoader:
    """Returns the train dataloader.

    Raises:
        ValueError: If train dataset is not initialized.

    Returns:
        Train dataloader.
    """
    if not self.train_dataset_available:
        raise ValueError("Train dataset is not initialized")

    return DataLoader(
        self.train_dataset,
        batch_size=self.batch_size,
        shuffle=True,
        num_workers=self.num_workers,
        drop_last=False,
        pin_memory=True,
        persistent_workers=self.num_workers > 0,
    )

val_dataloader()

Returns the validation dataloader.

Raises:

  • ValueError

    If validation dataset is not initialized.

Returns:

Source code in quadra/datamodules/segmentation.py
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
def val_dataloader(self) -> DataLoader:
    """Returns the validation dataloader.

    Raises:
        ValueError: If validation dataset is not initialized.

    Returns:
        val dataloader.
    """
    if not self.val_dataset_available:
        raise ValueError("Validation dataset is not initialized")

    return DataLoader(
        self.val_dataset,
        batch_size=self.batch_size,
        shuffle=False,
        num_workers=self.num_workers,
        drop_last=False,
        pin_memory=True,
        persistent_workers=self.num_workers > 0,
    )