vit_explainability
LinearModelPytorchWrapper(backbone, linear_classifier, example_input, device)
¶
Bases: Module
Pytorch wrapper for scikit-learn linear models.
Parameters:
-
backbone
(Module
) –Backbone
-
linear_classifier
(LinearClassifierMixin
) –ScikitLearn linear classifier model
-
example_input
(Tensor
) –Input example needed to obtain output shape
-
device
(device
) –The device to use. Defaults to "cpu"
Source code in quadra/utils/vit_explainability.py
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
|
VitAttentionGradRollout(model, attention_layer_names=None, discard_ratio=0.9, classifier=None, example_input=None)
¶
Attention gradient rollout class. Constructor registers hooks to the model's specified layers. Only 4 layers by default given the high load on gpu. Best gradcams obtained using all blocks.
Parameters:
-
model
(Module
) –Pytorch model
-
attention_layer_names
(list[str] | None
, default:None
) –On which layers to register the hooks
-
discard_ratio
(float
, default:0.9
) –Percentage of elements to discard
-
classifier
(LinearClassifierMixin | None
, default:None
) –Scikit-learn classifier. Leave it to None if model already has a classifier on top.
Source code in quadra/utils/vit_explainability.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
__call__(input_tensor, targets_list)
¶
Called when the class instance is used as a function.
Parameters:
-
input_tensor
(Tensor
) –Model's input tensor
-
targets_list
(list[int]
) –List of targets. If None, argmax is used
Returns:
-
out
(ndarray
) –Batch of output masks
Source code in quadra/utils/vit_explainability.py
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
get_attention(module, inpt, out)
¶
Hook to return attention.
Parameters:
-
module
(Module
) –Torch module
-
inpt
(Tensor
) –Input tensor
-
out
(Tensor
) –Output tensor, in this case the attention
Source code in quadra/utils/vit_explainability.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
get_attention_gradient(module, grad_input, grad_output)
¶
Hook to return attention.
Parameters:
-
module
(Module
) –Torch module
-
grad_input
(Tensor
) –Gradients' input tensor
-
grad_output
(Tensor
) –Gradients' output tensor, in this case the attention
Source code in quadra/utils/vit_explainability.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
|
VitAttentionRollout(model, attention_layer_names=None, head_fusion='mean', discard_ratio=0.9)
¶
Attention gradient rollout class. Constructor registers hooks to the model's specified layers. Only 4 layers by default given the high load on gpu. Best gradcams obtained using all blocks.
Parameters:
-
model
(Module
) –Model
-
attention_layer_names
(list[str] | None
, default:None
) –On which layers to register the hook
-
head_fusion
(str
, default:'mean'
) –Strategy of fusion for attention heads
-
discard_ratio
(float
, default:0.9
) –Percentage of elements to discard
Source code in quadra/utils/vit_explainability.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
__call__(input_tensor)
¶
Called when the class instance is used as a function.
Parameters:
-
input_tensor
(Tensor
) –Input tensor
Returns:
-
out
(ndarray
) –Batch of output masks
Source code in quadra/utils/vit_explainability.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
|
get_attention(module, inpt, out)
¶
Hook to return attention.
Parameters:
-
module
(Module
) –Torch module
-
inpt
(Tensor
) –Input tensor
-
out
(Tensor
) –Output tensor, in this case the attention
Source code in quadra/utils/vit_explainability.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
grad_rollout(attentions, gradients, discard_ratio=0.9, aspect_ratio=1.0)
¶
Apply gradient rollout on Attention matrices.
Parameters:
-
attentions
(list[Tensor]
) –Attention matrices
-
gradients
(list[Tensor]
) –Target class gradient matrices
-
discard_ratio
(float
, default:0.9
) –Percentage of elements to discard
-
aspect_ratio
(float
, default:1.0
) –Model inputs' width divided by height
Returns:
-
mask
(ndarray
) –Output mask, still needs a resize
Source code in quadra/utils/vit_explainability.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|
rollout(attentions, discard_ratio=0.9, head_fusion='mean', aspect_ratio=1.0)
¶
Apply rollout on Attention matrices.
Parameters:
-
attentions
(list[Tensor]
) –List of Attention matrices coming from different blocks
-
discard_ratio
(float
, default:0.9
) –Percentage of elements to discard
-
head_fusion
(str
, default:'mean'
) –Strategy of fusion of attention heads
-
aspect_ratio
(float
, default:1.0
) –Model inputs' width divided by height
Returns:
-
mask
(ndarray
) –Output mask, still needs a resize
Source code in quadra/utils/vit_explainability.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|