sam
              SAM(params, base_optimizer, rho=0.05, adaptive=True, **kwargs)
¶
    
              Bases: Optimizer
PyTorch implementation of Sharpness-Aware-Minization paper: https://arxiv.org/abs/2010.01412 and https://arxiv.org/abs/2102.11600. Taken from: https://github.com/davda54/sam.
Parameters:
- 
            
params(list[Parameter]) –model parameters.
 - 
            
base_optimizer(Optimizer) –optimizer to use.
 - 
            
rho(float, default:0.05) –Postive float value used to scale the gradients.
 - 
            
adaptive(bool, default:True) –Boolean flag indicating whether to use adaptive step update.
 - 
            
**kwargs(Any, default:{}) –Additional parameters for the base optimizer.
 
Source code in quadra/optimizers/sam.py
                    23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42  |  | 
            _grad_norm()
¶
    Put everything on the same device, in case of model parallelism Returns: Grad norm.
Source code in quadra/optimizers/sam.py
              109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127  |  | 
            first_step(zero_grad=False)
¶
    First step for SAM optimizer.
Parameters:
- 
            
zero_grad(bool, default:False) –Boolean flag indicating whether to zero the gradients.
 
Returns:
- 
              
None–None
 
Source code in quadra/optimizers/sam.py
              44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66  |  | 
            second_step(zero_grad=False)
¶
    Second step for SAM optimizer.
Parameters:
- 
            
zero_grad(bool, default:False) –Boolean flag indicating whether to zero the gradients.
 
Returns:
- 
              
None–None
 
Source code in quadra/optimizers/sam.py
              68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88  |  | 
            step(closure=None)
¶
    Step for SAM optimizer.
Parameters:
- 
            
closure(Callable | None, default:None) –The Optional closure for enable grad.
 
Returns:
- 
              
None–None
 
Source code in quadra/optimizers/sam.py
              90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107  |  |