segmentation
Segmentation(config, num_viz_samples=5, checkpoint_path=None, run_test=False, evaluate=None, report=False)
¶
Bases: Generic[SegmentationDataModuleT], LightningTask[SegmentationDataModuleT]
Task for segmentation.
Parameters:
-
config(DictConfig) –Config object
-
num_viz_samples(int, default:5) –Number of samples to visualize. Defaults to 5.
-
checkpoint_path(str | None, default:None) –Path to the checkpoint to load the model from. Defaults to None.
-
run_test(bool, default:False) –If True, run test after training. Defaults to False.
-
evaluate(DictConfig | None, default:None) –Dict with evaluation parameters. Defaults to None.
-
report(bool, default:False) –If True, create report after training. Defaults to False.
Source code in quadra/tasks/segmentation.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | |
module
property
writable
¶
Get the module.
export()
¶
Generate a deployment model for the task.
Source code in quadra/tasks/segmentation.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | |
generate_report()
¶
Generate a report for the task.
Source code in quadra/tasks/segmentation.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | |
prepare()
¶
Prepare the task.
Source code in quadra/tasks/segmentation.py
120 121 122 123 | |
SegmentationAnalysisEvaluation(config, model_path, device=None)
¶
Bases: SegmentationEvaluation
Segmentation Analysis Evaluation Task Args: config: The experiment configuration model_path: The model path. device: Device to use for evaluation. If None, the device is automatically determined.
Source code in quadra/tasks/segmentation.py
310 311 312 313 314 315 316 317 | |
generate_report()
¶
Generate a report.
Source code in quadra/tasks/segmentation.py
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | |
prepare()
¶
Prepare the evaluation task.
Source code in quadra/tasks/segmentation.py
322 323 324 325 326 | |
test()
¶
Run testing.
Source code in quadra/tasks/segmentation.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | |
train()
¶
Skip training.
Source code in quadra/tasks/segmentation.py
319 320 | |
SegmentationEvaluation(config, model_path, device='cpu')
¶
Bases: Evaluation[SegmentationDataModuleT]
Segmentation Evaluation Task with deployment models.
Parameters:
-
config(DictConfig) –The experiment configuration
-
model_path(str) –The experiment path.
-
device(str | None, default:'cpu') –Device to use for evaluation. If None, the device is automatically determined.
Raises:
-
ValueError–If the model path is not provided
Source code in quadra/tasks/segmentation.py
246 247 248 249 250 251 252 253 | |
inference(dataloader, deployment_model, device)
¶
Run inference on the dataloader and return the output.
Parameters:
-
dataloader(DataLoader) –The dataloader to run inference on
-
deployment_model(BaseEvaluationModel) –The deployment model to use
-
device(device) –The device to run inference on
Source code in quadra/tasks/segmentation.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | |
prepare()
¶
Prepare the evaluation.
Source code in quadra/tasks/segmentation.py
258 259 260 261 262 263 264 265 266 267 268 269 270 | |
save_config()
¶
Skip saving the config.
Source code in quadra/tasks/segmentation.py
255 256 | |