classification
ClassificationDataModule(data_path, dataset=ImageClassificationListDataset, name='classification_datamodule', num_workers=8, batch_size=32, seed=42, val_size=0.2, test_size=0.2, num_data_class=None, exclude_filter=None, include_filter=None, label_map=None, load_aug_images=False, aug_name=None, n_aug_to_take=4, replace_str_from=None, replace_str_to=None, train_transform=None, val_transform=None, test_transform=None, train_split_file=None, test_split_file=None, val_split_file=None, class_to_idx=None)
¶
Bases: BaseDataModule
Base class single folder based classification datamodules. If there is no nested folders, use this class.
Parameters:
-
data_path
(
str
) –Path to the data main folder.
-
name
(
str
) –The name for the data module. Defaults to "classification_datamodule".
-
num_workers
(
int
) –Number of workers for dataloaders. Defaults to 16.
-
batch_size
(
int
) –Batch size. Defaults to 32.
-
seed
(
int
) –Random generator seed. Defaults to 42.
-
dataset
(
Type[ImageClassificationListDataset]
) –Dataset class.
-
val_size
(
Optional[float]
) –The validation split. Defaults to 0.2.
-
test_size
(
float
) –The test split. Defaults to 0.2.
-
exclude_filter
(
Optional[List[str]]
) –The filter for excluding folders. Defaults to None.
-
include_filter
(
Optional[List[str]]
) –The filter for including folders. Defaults to None.
-
label_map
(
Optional[Dict[str, Any]]
) –The mapping for labels. Defaults to None.
-
num_data_class
(
Optional[int]
) –The number of samples per class. Defaults to None.
-
train_transform
(
Optional[albumentations.Compose]
) –Transformations for train dataset. Defaults to None.
-
val_transform
(
Optional[albumentations.Compose]
) –Transformations for validation dataset. Defaults to None.
-
test_transform
(
Optional[albumentations.Compose]
) –Transformations for test dataset. Defaults to None.
-
train_split_file
(
Optional[str]
) –The file with train split. Defaults to None.
-
val_split_file
(
Optional[str]
) –The file with validation split. Defaults to None.
-
test_split_file
(
Optional[str]
) –The file with test split. Defaults to None.
-
class_to_idx
(
Optional[Dict[str, int]]
) –The mapping from class name to index. Defaults to None.
Source code in quadra/datamodules/classification.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
predict_dataloader()
¶
Returns a dataloader used for predictions.
Source code in quadra/datamodules/classification.py
366 367 368 |
|
setup(stage=None)
¶
Setup data module based on stages of training.
Source code in quadra/datamodules/classification.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
|
test_dataloader()
¶
Returns the test dataloader.
Raises:
-
ValueError
–If test dataset is not initialized.
Returns:
-
DataLoader
–test dataloader.
Source code in quadra/datamodules/classification.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
|
train_dataloader()
¶
Returns the train dataloader.
Raises:
-
ValueError
–If train dataset is not initialized.
Returns:
-
DataLoader
–Train dataloader.
Source code in quadra/datamodules/classification.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
|
val_dataloader()
¶
Returns the validation dataloader.
Raises:
-
ValueError
–If validation dataset is not initialized.
Returns:
-
DataLoader
–val dataloader.
Source code in quadra/datamodules/classification.py
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
|
MultilabelClassificationDataModule(data_path, images_and_labels_file=None, train_split_file=None, test_split_file=None, val_split_file=None, name='multilabel_datamodule', dataset=MultilabelClassificationDataset, num_classes=None, num_workers=16, batch_size=64, test_batch_size=64, seed=42, val_size=0.2, test_size=0.2, train_transform=None, val_transform=None, test_transform=None, class_to_idx=None, **kwargs)
¶
Bases: BaseDataModule
Base class for all multi-label modules.
Parameters:
-
data_path
(
str
) –Path to the data main folder.
-
images_and_labels_file
(
Optional[str]
) –a path to a txt file containing the relative (to
data_path
) path of images with their relative labels, in a comma-separated way. E.g.:- path1,l1,l2,l3
- path2,l4,l5
- ...
One of
images_and_label
and bothtrain_split_file
andtest_split_file
must be set. Defaults to None. -
name
(
str
) –The name for the data module. Defaults to "multilabel_datamodule".
-
dataset
(
Callable
) –a callable returning a torch.utils.data.Dataset class.
-
num_classes
(
Optional[int]
) –the number of classes in the dataset. This is used to create one-hot encoded targets. Defaults to None.
-
num_workers
(
int
) –Number of workers for dataloaders. Defaults to 16.
-
batch_size
(
int
) –Training batch size. Defaults to 64.
-
test_batch_size
(
int
) –Testing batch size. Defaults to 64.
-
seed
(
int
) –Random generator seed. Defaults to SegmentationEvalua2.
-
val_size
(
Optional[float]
) –The validation split. Defaults to 0.2.
-
test_size
(
Optional[float]
) –The test split. Defaults to 0.2.
-
train_transform
(
Optional[albumentations.Compose]
) –Transformations for train dataset. Defaults to None.
-
val_transform
(
Optional[albumentations.Compose]
) –Transformations for validation dataset. Defaults to None.
-
test_transform
(
Optional[albumentations.Compose]
) –Transformations for test dataset. Defaults to None.
-
train_split_file
(
Optional[str]
) –The file with train split. Defaults to None.
-
val_split_file
(
Optional[str]
) –The file with validation split. Defaults to None.
-
test_split_file
(
Optional[str]
) –The file with test split. Defaults to None.
-
class_to_idx
(
Optional[Dict[str, int]]
) –a clss to idx dictionary. Defaults to None.
Source code in quadra/datamodules/classification.py
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
|
predict_dataloader()
¶
Returns a dataloader used for predictions.
Source code in quadra/datamodules/classification.py
949 950 951 |
|
setup(stage=None)
¶
Setup data module based on stages of training.
Source code in quadra/datamodules/classification.py
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
|
test_dataloader()
¶
Returns the test dataloader.
Raises:
-
ValueError
–If test dataset is not initialized.
Returns:
-
DataLoader
–test dataloader.
Source code in quadra/datamodules/classification.py
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
|
train_dataloader()
¶
Returns the train dataloader.
Raises:
-
ValueError
–If train dataset is not initialized.
Returns:
-
DataLoader
–Train dataloader.
Source code in quadra/datamodules/classification.py
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
|
val_dataloader()
¶
Returns the validation dataloader.
Raises:
-
ValueError
–If validation dataset is not initialized.
Returns:
-
DataLoader
–val dataloader.
Source code in quadra/datamodules/classification.py
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 |
|
SklearnClassificationDataModule(data_path, exclude_filter=None, include_filter=None, val_size=0.2, class_to_idx=None, label_map=None, seed=42, batch_size=32, num_workers=6, train_transform=None, val_transform=None, test_transform=None, roi=None, n_splits=1, phase='train', cache=False, limit_training_data=None, train_split_file=None, test_split_file=None, name='sklearn_classification_datamodule', dataset=ImageClassificationListDataset, **kwargs)
¶
Bases: BaseDataModule
A generic Data Module for classification with frozen torch backbone and sklearn classifier.
It can also handle k-fold cross validation.
Parameters:
-
name
(
str
) –The name for the data module. Defaults to "sklearn_classification_datamodule".
-
data_path
(
str
) –Path to images main folder
-
exclude_filter
(
Optional[List[str]]
) –List of string filter to be used to exclude images. If None no filter will be applied.
-
include_filter
(
Optional[List[str]]
) –List of string filter to be used to include images. Only images that satisfied at list one of the filter will be included.
-
val_size
(
float
) –The validation split. Defaults to 0.2.
-
class_to_idx
(
Optional[Dict[str, int]]
) –Dictionary of conversion btw folder name and index. Only file whose label is in dictionary key list will be considered. If None all files will be considered and a custom conversion is created.
-
seed
(
int
) –Fixed seed for random operations
-
batch_size
(
int
) –Dimension of batches for dataloader
-
num_workers
(
int
) –Number of workers for dataloader
-
train_transform
(
Optional[albumentations.Compose]
) –Albumentation transformations for training set
-
val_transform
(
Optional[albumentations.Compose]
) –Albumentation transformations for validation set
-
test_transform
(
Optional[albumentations.Compose]
) –Albumentation transformations for test set
-
roi
(
Optional[Tuple[int, int, int, int]]
) –Optional cropping region
-
n_splits
(
int
) –Number of dataset subdivision (default 1 -> train/test). Use a value >= 2 for cross validation.
-
phase
(
str
) –Either train or test
-
cache
(
bool
) –If true disable shuffling in all dataloader to enable feature caching
-
limit_training_data
(
Optional[int]
) –if defined, each class will be donwsampled to this number. It must be >= 2 to allow splitting
-
label_map
(
Optional[Dict[str, Any]]
) –Dictionary of conversion btw folder name and label.
-
train_split_file
(
Optional[str]
) –Optional path to a csv file containing the train split samples.
-
test_split_file
(
Optional[str]
) –Optional path to a csv file containing the test split samples.
-
**kwargs
(
Any
) –Additional arguments for BaseDataModule
Source code in quadra/datamodules/classification.py
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
|
full_dataloader()
¶
Return a dataloader to perform training on the entire dataset.
Returns:
-
DataLoader
–dataloader to perform training on the entire dataset after evaluation. This is useful
-
DataLoader
–to perform a final training on the entire dataset after the evaluation phase.
Source code in quadra/datamodules/classification.py
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
|
predict_dataloader()
¶
Returns a dataloader used for predictions.
Source code in quadra/datamodules/classification.py
553 554 555 |
|
setup(stage)
¶
Setup data module based on stages of training.
Source code in quadra/datamodules/classification.py
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
|
test_dataloader()
¶
Returns the test dataloader.
Raises:
-
ValueError
–If test dataset is not initialized.
Returns:
-
DataLoader
–test dataloader.
Source code in quadra/datamodules/classification.py
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
|
train_dataloader()
¶
Returns a list of train dataloader.
Raises:
-
ValueError
–If train dataset is not initialized.
Returns:
-
List[DataLoader]
–list of train dataloader.
Source code in quadra/datamodules/classification.py
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
|
val_dataloader()
¶
Returns a list of validation dataloader.
Raises:
-
ValueError
–If validation dataset is not initialized.
Returns:
-
List[DataLoader]
–List of validation dataloader.
Source code in quadra/datamodules/classification.py
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
|