tasks
AnomalibDetection(config, module_function, checkpoint_path=None, run_test=True, report=True, export_config=None)
¶
Bases: Generic[AnomalyDataModuleT]
, LightningTask[AnomalyDataModuleT]
Anomaly Detection Task.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
module_function
(
DictConfig
) –The function that instantiates the module and model
-
checkpoint_path
(
Optional[str]
) –The path to the checkpoint to load the model from. Defaults to None.
-
run_test
(
bool
) –Whether to run the test after training. Defaults to False.
-
report
(
bool
) –Whether to report the results. Defaults to False.
-
export_config
(
Optional[DictConfig]
) –Dictionary containing the export configuration, it should contain the following keys:
types
: List of types to export.input_shapes
: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/anomaly.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|
module: AnomalyModule
property
writable
¶
Get the module.
export()
¶
Export model for production.
Source code in quadra/tasks/anomaly.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
generate_report()
¶
Generate a report for the task and try to upload artifacts.
Source code in quadra/tasks/anomaly.py
255 256 257 258 |
|
prepare()
¶
Prepare the task.
Source code in quadra/tasks/anomaly.py
107 108 109 110 111 |
|
Classification(config, output, checkpoint_path=None, lr_multiplier=None, export_config=None, gradcam=False, report=False, run_test=False)
¶
Bases: Generic[ClassificationDataModuleT]
, LightningTask[ClassificationDataModuleT]
Classification Task.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
output
(
DictConfig
) –The otuput configuration.
-
export_config
(
Optional[DictConfig]
) –Dictionary containing the export configuration, it should contain the following keys:
types
: List of types to export.input_shapes
: Optional list of input shapes to use, they must be in the same order of the forward arguments.
-
gradcam
(
bool
) –Whether to compute gradcams
-
checkpoint_path
(
Optional[str]
) –The path to the checkpoint to load the model from. Defaults to None.
-
lr_multiplier
(
Optional[float]
) –The multiplier for the backbone learning rate. Defaults to None.
-
output
(
DictConfig
) –The ouput configuration (under task config). It contains the bool "example" to generate figs of discordant/concordant predictions.
-
report
(
bool
) –Whether to generate a report containing the results after test phase
-
run_test
(
bool
) –Whether to run the test phase.
Source code in quadra/tasks/classification.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
len_train_dataloader: int
property
¶
Get the length of the train dataloader.
optimizer: torch.optim.Optimizer
property
writable
¶
Get the optimizer.
scheduler: torch.optim.lr_scheduler._LRScheduler
property
writable
¶
Get the scheduler.
export()
¶
Generate deployment models for the task.
Source code in quadra/tasks/classification.py
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
freeze_layers(freeze_parameters_name)
¶
Freeze layers specified in freeze_parameters_name.
Parameters:
Source code in quadra/tasks/classification.py
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
|
generate_report()
¶
Generate a report for the task.
Source code in quadra/tasks/classification.py
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
|
module(module_config)
¶
Set the module of the model.
Source code in quadra/tasks/classification.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
prepare()
¶
Prepare the experiment.
Source code in quadra/tasks/classification.py
232 233 234 235 236 237 238 |
|
test()
¶
Test the model.
Source code in quadra/tasks/classification.py
240 241 242 243 244 245 246 247 248 |
|
ClassificationEvaluation(config, output, model_path, report=True, gradcam=False, device=None)
¶
Bases: Evaluation[ClassificationDataModuleT]
Perform a test on an imported Classification pytorch model.
Parameters:
-
config
(
DictConfig
) –Task configuration
-
output
(
DictConfig
) –Configuration for the output
-
model_path
(
str
) –Path to pytorch .pt model file
-
report
(
bool
) –Whether to generate the report of the predictions
-
gradcam
(
bool
) –Whether to compute gradcams
-
device
(
Optional[str]
) –Device to use for evaluation. If None, the device is automatically determined
Source code in quadra/tasks/classification.py
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 |
|
deployment_model
property
writable
¶
Deployment model.
execute()
¶
Execute the evaluation.
Source code in quadra/tasks/classification.py
1117 1118 1119 1120 1121 1122 1123 |
|
generate_report()
¶
Generate a report for the task.
Source code in quadra/tasks/classification.py
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 |
|
prepare()
¶
Prepare the evaluation.
Source code in quadra/tasks/classification.py
1006 1007 1008 1009 1010 |
|
prepare_gradcam()
¶
Initializing gradcam for the predictions.
Source code in quadra/tasks/classification.py
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 |
|
test()
¶
Perform test.
Source code in quadra/tasks/classification.py
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 |
|
Evaluation(config, model_path, device=None)
¶
Bases: Generic[DataModuleT]
, Task[DataModuleT]
Base Evaluation Task with deployment models.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
model_path
(
str
) –The model path.
-
device
(
Optional[str]
) –Device to use for evaluation. If None, the device is automatically determined.
Source code in quadra/tasks/base.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
|
deployment_model: Union[RecursiveScriptModule, nn.Module]
property
writable
¶
Deployment model.
prepare()
¶
Prepare the evaluation.
Source code in quadra/tasks/base.py
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
|
LightningTask(config, checkpoint_path=None, run_test=False, report=False, export_config=None)
¶
Bases: Generic[DataModuleT]
, Task[DataModuleT]
Base Experiment Task.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
checkpoint_path
(
Optional[str]
) –The path to the checkpoint to load the model from. Defaults to None.
-
run_test
(
bool
) –Whether to run the test after training. Defaults to False.
-
report
(
bool
) –Whether to generate a report. Defaults to False.
-
export_config
(
Optional[DictConfig]
) –Dictionary containing the export configuration, it should contain the following keys:
types
: List of types to export.input_shapes
: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/base.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
callbacks: List[Callback]
property
writable
¶
List[Callback]: The callbacks.
devices: Union[int, List[int]]
property
writable
¶
List[int]: The devices ids.
logger: List[Logger]
property
writable
¶
List[Logger]: The loggers.
module: LightningModule
property
writable
¶
trainer: Trainer
property
writable
¶
add_callback(callback)
¶
Add a callback to the trainer.
Parameters:
-
callback
(
Callback
) –The callback to add
Source code in quadra/tasks/base.py
296 297 298 299 300 301 302 303 |
|
execute()
¶
Execute the experiment and all the steps.
Source code in quadra/tasks/base.py
305 306 307 308 309 310 311 312 313 314 315 |
|
finalize()
¶
Finalize the experiment.
Source code in quadra/tasks/base.py
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
|
prepare()
¶
Prepare the experiment.
Source code in quadra/tasks/base.py
135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
test()
¶
Test the model.
Source code in quadra/tasks/base.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
train()
¶
Train the model.
Source code in quadra/tasks/base.py
246 247 248 249 250 251 252 253 254 255 |
|
PatchSklearnClassification(config, output, device, export_config=None)
¶
Bases: Task[PatchSklearnClassificationDataModule]
Patch classification using torch backbone for feature extraction and sklearn to learn a linear classifier.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
device
(
str
) –The device to use
-
output
(
DictConfig
) –Dictionary defining which kind of outputs to generate. Defaults to None.
-
export_config
(
Optional[DictConfig]
) –Dictionary containing the export configuration, it should contain the following keys:
types
: List of types to export.input_shapes
: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/patch.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
backbone: torch.nn.Module
property
writable
¶
model: ClassifierMixin
property
writable
¶
sklearn.base.ClassifierMixin: The model.
trainer: SklearnClassificationTrainer
property
writable
¶
execute()
¶
Execute the experiment and all the steps.
Source code in quadra/tasks/patch.py
262 263 264 265 266 267 268 269 270 |
|
export()
¶
Generate deployment model for the task.
Source code in quadra/tasks/patch.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
generate_report()
¶
Generate the report for the task.
Source code in quadra/tasks/patch.py
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
prepare()
¶
Prepare the experiment.
Source code in quadra/tasks/patch.py
92 93 94 95 96 97 98 |
|
train()
¶
Train the model.
Source code in quadra/tasks/patch.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
|
PatchSklearnTestClassification(config, output, model_path, device='cpu')
¶
Bases: Evaluation[PatchSklearnClassificationDataModule]
Perform a test of an already trained classification model.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
output
(
DictConfig
) –where to save resultss
-
model_path
(
str
) –path to trained model from PatchSklearnClassification task.
-
device
(
str
) –the device where to run the model (cuda or cpu). Defaults to 'cpu'.
Source code in quadra/tasks/patch.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
backbone: torch.nn.Module
property
writable
¶
classifier: ClassifierMixin
property
writable
¶
deployment_model
property
writable
¶
Deployment model.
trainer: SklearnClassificationTrainer
property
writable
¶
execute()
¶
Execute the experiment and all the steps.
Source code in quadra/tasks/patch.py
480 481 482 483 484 485 486 |
|
generate_report()
¶
Generate a report for the task.
Source code in quadra/tasks/patch.py
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
|
prepare()
¶
Prepare the experiment.
Source code in quadra/tasks/patch.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
|
test()
¶
Run the test.
Source code in quadra/tasks/patch.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
|
PlaceholderTask
¶
Bases: Task
Placeholder task.
execute()
¶
Execute the task and all the steps.
Source code in quadra/tasks/base.py
321 322 323 324 325 |
|
SSL(config, run_test=False, report=False, checkpoint_path=None, export_config=None)
¶
Bases: LightningTask
SSL Task.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
checkpoint_path
(
Optional[str]
) –The path to the checkpoint to load the model from Defaults to None
-
report
(
bool
) –Whether to create the report
-
run_test
(
bool
) –Whether to run final test
-
export_config
(
Optional[DictConfig]
) –Dictionary containing the export configuration, it should contain the following keys:
types
: List of types to export.input_shapes
: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/ssl.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|
optimizer: torch.optim.Optimizer
property
writable
¶
Get the optimizer.
scheduler: torch.optim.lr_scheduler._LRScheduler
property
writable
¶
Get the scheduler.
export()
¶
Deploy a model ready for production.
Source code in quadra/tasks/ssl.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
learnable_parameters()
¶
Get the learnable parameters.
Source code in quadra/tasks/ssl.py
59 60 61 |
|
test()
¶
Test the model.
Source code in quadra/tasks/ssl.py
94 95 96 97 98 99 |
|
Segmentation(config, num_viz_samples=5, checkpoint_path=None, run_test=False, evaluate=None, report=False, export_config=None)
¶
Bases: Generic[SegmentationDataModuleT]
, LightningTask[SegmentationDataModuleT]
Task for segmentation.
Parameters:
-
config
(
DictConfig
) –Config object
-
num_viz_samples
(
int
) –Number of samples to visualize. Defaults to 5.
-
checkpoint_path
(
Optional[str]
) –Path to the checkpoint to load the model from. Defaults to None.
-
run_test
(
bool
) –If True, run test after training. Defaults to False.
-
evaluate
(
Optional[DictConfig]
) –Dict with evaluation parameters. Defaults to None.
-
report
(
bool
) –If True, create report after training. Defaults to False.
-
export_config
(
Optional[DictConfig]
) –Dictionary containing the export configuration, it should contain the following keys:
types
: List of types to export.input_shapes
: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/segmentation.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
module: SegmentationModel
property
writable
¶
Get the module.
export()
¶
Generate a deployment model for the task.
Source code in quadra/tasks/segmentation.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
generate_report()
¶
Generate a report for the task.
Source code in quadra/tasks/segmentation.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
prepare()
¶
Prepare the task.
Source code in quadra/tasks/segmentation.py
119 120 121 122 |
|
SegmentationAnalysisEvaluation(config, model_path, device='cpu')
¶
Bases: SegmentationEvaluation
Segmentation Analysis Evaluation Task
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
model_path
(
str
) –The model path.
-
device
(
Optional[str]
) –Device to use for evaluation. If None, the device is automatically determined.
Source code in quadra/tasks/segmentation.py
311 312 313 314 315 316 317 318 |
|
generate_report()
¶
Generate a report.
Source code in quadra/tasks/segmentation.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
test()
¶
Run testing.
Source code in quadra/tasks/segmentation.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
|
train()
¶
Skip training.
Source code in quadra/tasks/segmentation.py
320 321 |
|
SegmentationEvaluation(config, model_path, device='cpu')
¶
Bases: Evaluation[SegmentationDataModuleT]
Segmentation Evaluation Task with deployment models.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
model_path
(
str
) –The experiment path.
-
device
(
Optional[str]
) –Device to use for evaluation. If None, the device is automatically determined.
Raises:
-
ValueError
–If the model path is not provided
Source code in quadra/tasks/segmentation.py
247 248 249 250 251 252 253 254 |
|
inference(dataloader, deployment_model, device)
¶
Run inference on the dataloader and return the output.
Parameters:
-
dataloader
(
DataLoader
) –The dataloader to run inference on
-
deployment_model
(
torch.nn.Module
) –The deployment model to use
-
device
(
torch.device
) –The device to run inference on
Source code in quadra/tasks/segmentation.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
prepare()
¶
Prepare the evaluation.
Source code in quadra/tasks/segmentation.py
259 260 261 262 263 264 265 266 267 268 269 270 271 |
|
save_config()
¶
Skip saving the config.
Source code in quadra/tasks/segmentation.py
256 257 |
|
SklearnClassification(config, output, device, export_config=None)
¶
Bases: Generic[SklearnClassificationDataModuleT]
, Task[SklearnClassificationDataModuleT]
Sklearn classification task.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
device
(
str
) –The device to use. Defaults to None.
-
output
(
DictConfig
) –Dictionary defining which kind of outputs to generate. Defaults to None.
-
export_config
(
Optional[DictConfig]
) –Dictionary containing the export configuration, it should contain the following keys:
types
: List of types to export.input_shapes
: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/classification.py
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
|
backbone: nn.Module
property
writable
¶
model: ClassifierMixin
property
writable
¶
sklearn.base.ClassifierMixin: The model.
trainer: SklearnClassificationTrainer
property
writable
¶
execute()
¶
Execute the experiment and all the steps.
Source code in quadra/tasks/classification.py
738 739 740 741 742 743 744 745 746 747 748 749 |
|
export()
¶
Generate deployment model for the task.
Source code in quadra/tasks/classification.py
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
|
generate_report()
¶
Generate report for the task.
Source code in quadra/tasks/classification.py
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
|
prepare()
¶
Prepare the experiment.
Source code in quadra/tasks/classification.py
481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
|
test()
¶
Skip test phase.
Source code in quadra/tasks/classification.py
621 622 |
|
test_full_data()
¶
Test model trained on full dataset.
Source code in quadra/tasks/classification.py
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
|
train()
¶
Train the model.
Source code in quadra/tasks/classification.py
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
|
train_full_data()
¶
Train the model on train + validation.
Source code in quadra/tasks/classification.py
613 614 615 616 617 618 619 |
|
SklearnTestClassification(config, output, model_path, device, gradcam=False, **kwargs)
¶
Bases: Evaluation[SklearnClassificationDataModuleT]
Perform a test using an imported SklearnClassification pytorch model.
Parameters:
-
config
(
DictConfig
) –The experiment configuration
-
output
(
DictConfig
) –where to save results
-
model_path
(
str
) –path to trained model generated from SklearnClassification task.
-
device
(
str
) –the device where to run the model (cuda or cpu)
-
gradcam
(
bool
) –Whether to compute gradcams
Source code in quadra/tasks/classification.py
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
|
backbone: nn.Module
property
writable
¶
classifier: ClassifierMixin
property
writable
¶
deployment_model
property
writable
¶
Deployment model.
trainer: SklearnClassificationTrainer
property
writable
¶
execute()
¶
Execute the experiment and all the steps.
Source code in quadra/tasks/classification.py
912 913 914 915 916 917 918 |
|
generate_report()
¶
Generate a report for the task.
Source code in quadra/tasks/classification.py
897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
|
prepare()
¶
Prepare the experiment.
Source code in quadra/tasks/classification.py
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
|
test()
¶
Run the test.
Source code in quadra/tasks/classification.py
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
|
Task(config, export_config=None)
¶
Bases: Generic[DataModuleT]
Base Experiment Task.
Parameters:
-
config
(
DictConfig
) –The experiment configuration.
-
export_config
(
Optional[DictConfig]
) –Dictionary containing the export configuration, it should contain the following keys:
types
: List of types to export.input_shapes
: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/base.py
40 41 42 43 44 45 46 |
|
datamodule: DataModuleT
property
writable
¶
execute()
¶
Execute the experiment and all the steps.
Source code in quadra/tasks/base.py
90 91 92 93 94 95 96 97 98 |
|
export()
¶
Export model for production.
Source code in quadra/tasks/base.py
78 79 80 |
|
finalize()
¶
Finalize the experiment.
Source code in quadra/tasks/base.py
86 87 88 |
|
generate_report()
¶
Generate a report.
Source code in quadra/tasks/base.py
82 83 84 |
|
prepare()
¶
Prepare the experiment.
Source code in quadra/tasks/base.py
54 55 56 |
|
save_config()
¶
Save the experiment configuration when running an Hydra experiment.
Source code in quadra/tasks/base.py
48 49 50 51 52 |
|
test()
¶
Test the model.
Source code in quadra/tasks/base.py
74 75 76 |
|
train()
¶
Train the model.
Source code in quadra/tasks/base.py
70 71 72 |
|