Skip to content

tasks

AnomalibDetection(config, module_function, checkpoint_path=None, run_test=True, report=True, export_config=None)

Bases: Generic[AnomalyDataModuleT], LightningTask[AnomalyDataModuleT]

Anomaly Detection Task.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • module_function (DictConfig) –

    The function that instantiates the module and model

  • checkpoint_path (Optional[str]) –

    The path to the checkpoint to load the model from. Defaults to None.

  • run_test (bool) –

    Whether to run the test after training. Defaults to False.

  • report (bool) –

    Whether to report the results. Defaults to False.

  • export_config (Optional[DictConfig]) –

    Dictionary containing the export configuration, it should contain the following keys:

    • types: List of types to export.
    • input_shapes: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/anomaly.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def __init__(
    self,
    config: DictConfig,
    module_function: DictConfig,
    checkpoint_path: Optional[str] = None,
    run_test: bool = True,
    report: bool = True,
    export_config: Optional[DictConfig] = None,
):
    super().__init__(
        config=config,
        checkpoint_path=checkpoint_path,
        run_test=run_test,
        report=report,
        export_config=export_config,
    )
    self._module: AnomalyModule
    self.module_function = module_function
    self.export_folder = "deployment_model"
    self.report_path = ""

module: AnomalyModule property writable

Get the module.

export()

Export model for production.

Source code in quadra/tasks/anomaly.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def export(self) -> None:
    """Export model for production."""
    if self.export_config is None or len(self.export_config.types) == 0:
        log.info("No export type specified skipping export")
        return

    if self.config.trainer.get("fast_dev_run"):
        log.warning("Skipping export since fast_dev_run is enabled")
        return

    model = self.module.model

    input_shapes = self.export_config.input_shapes

    half_precision = int(self.trainer.precision) == 16

    for export_type in self.export_config.types:
        if export_type == "torchscript":
            out = export_torchscript_model(
                model=model,
                input_shapes=input_shapes,
                output_path=self.export_folder,
                half_precision=half_precision,
            )

            if out is None:
                log.warning("Skipping torchscript export since the model is not supported")
                continue

            _, input_shapes = out

    model_json = {
        "input_size": input_shapes,
        "classes": {0: "good", 1: "defect"},
        "mean": list(self.config.transforms.mean),
        "std": list(self.config.transforms.std),
        "image_threshold": np.round(self.module.image_threshold.value.item(), 3),
        "pixel_threshold": np.round(self.module.pixel_threshold.value.item(), 3),
    }

    with open(os.path.join(self.export_folder, "model.json"), "w") as f:
        json.dump(model_json, f)

generate_report()

Generate a report for the task and try to upload artifacts.

Source code in quadra/tasks/anomaly.py
255
256
257
258
def generate_report(self):
    """Generate a report for the task and try to upload artifacts."""
    self._generate_report()
    self._upload_artifacts()

prepare()

Prepare the task.

Source code in quadra/tasks/anomaly.py
107
108
109
110
111
def prepare(self) -> None:
    """Prepare the task."""
    super().prepare()
    self.module = self.config.model
    self.module.model = ModelSignatureWrapper(self.module.model)

Classification(config, output, checkpoint_path=None, lr_multiplier=None, export_config=None, gradcam=False, report=False, run_test=False)

Bases: Generic[ClassificationDataModuleT], LightningTask[ClassificationDataModuleT]

Classification Task.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • output (DictConfig) –

    The otuput configuration.

  • export_config (Optional[DictConfig]) –

    Dictionary containing the export configuration, it should contain the following keys:

    • types: List of types to export.
    • input_shapes: Optional list of input shapes to use, they must be in the same order of the forward arguments.
  • gradcam (bool) –

    Whether to compute gradcams

  • checkpoint_path (Optional[str]) –

    The path to the checkpoint to load the model from. Defaults to None.

  • lr_multiplier (Optional[float]) –

    The multiplier for the backbone learning rate. Defaults to None.

  • output (DictConfig) –

    The ouput configuration (under task config). It contains the bool "example" to generate figs of discordant/concordant predictions.

  • report (bool) –

    Whether to generate a report containing the results after test phase

  • run_test (bool) –

    Whether to run the test phase.

Source code in quadra/tasks/classification.py
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    checkpoint_path: Optional[str] = None,
    lr_multiplier: Optional[float] = None,
    export_config: Optional[DictConfig] = None,
    gradcam: bool = False,
    report: bool = False,
    run_test: bool = False,
):
    super().__init__(
        config=config,
        checkpoint_path=checkpoint_path,
        run_test=run_test,
        report=report,
        export_config=export_config,
    )
    self.output = output
    self.gradcam = gradcam
    self._lr_multiplier = lr_multiplier
    self._pre_classifier: nn.Module
    self._classifier: nn.Module
    self._model: nn.Module
    self._optimizer: torch.optim.Optimizer
    self._scheduler: torch.optim.lr_scheduler._LRScheduler
    self.model_json: Optional[Dict[str, Any]] = None
    self.export_folder: str = "deployment_model"
    self.deploy_info_file: str = "model.json"
    self.report_confmat: pd.DataFrame

len_train_dataloader: int property

Get the length of the train dataloader.

optimizer: torch.optim.Optimizer property writable

Get the optimizer.

scheduler: torch.optim.lr_scheduler._LRScheduler property writable

Get the scheduler.

export()

Generate deployment models for the task.

Source code in quadra/tasks/classification.py
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
def export(self) -> None:
    """Generate deployment models for the task."""
    if self.export_config is None or len(self.export_config.types) == 0:
        log.info("No export type specified skipping export")
        return

    if self.datamodule.class_to_idx is None:
        log.warning(
            "No `class_to_idx` found in the datamodule, class information will not be saved in the model.json"
        )
        idx_to_class = {}
    else:
        idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    if self.trainer.checkpoint_callback is None:
        raise ValueError("No checkpoint callback found in the trainer")

    best_model_path = self.trainer.checkpoint_callback.best_model_path  # type: ignore[attr-defined]
    log.info("Saving deployment model for %s checkpoint", best_model_path)

    module = self.module.load_from_checkpoint(
        best_model_path,
        model=self.module.model,
        optimizer=self.optimizer,
        lr_scheduler=self.scheduler,
        criterion=self.module.criterion,
        gradcam=False,
    )

    input_shapes = self.export_config.input_shapes

    # TODO: This breaks with bf16 precision!!!
    half_precision = int(self.trainer.precision) == 16

    for export_type in self.export_config.types:
        if export_type == "torchscript":
            out = export_torchscript_model(
                model=module.model,
                input_shapes=input_shapes,
                output_path=self.export_folder,
                half_precision=half_precision,
            )

            if out is None:
                log.warning("Skipping torchscript export since the model is not supported")
                continue

            _, input_shapes = out
        elif export_type == "pytorch":
            export_pytorch_model(
                model=module.model,
                output_path=self.export_folder,
            )
            with open(os.path.join(self.export_folder, "model_config.yaml"), "w") as f:
                OmegaConf.save(self.config.model, f, resolve=True)
        else:
            log.warning("Export type: %s not implemented", export_type)

    self.model_json = {
        "input_size": input_shapes,
        "classes": idx_to_class,
        "mean": list(self.config.transforms.mean),
        "std": list(self.config.transforms.std),
    }

    with open(os.path.join(self.export_folder, self.deploy_info_file), "w") as f:
        json.dump(self.model_json, f)

freeze_layers(freeze_parameters_name)

Freeze layers specified in freeze_parameters_name.

Parameters:

  • freeze_parameters_name (List[str]) –

    Layers that will be frozen during training.

Source code in quadra/tasks/classification.py
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def freeze_layers(self, freeze_parameters_name: List[str]):
    """Freeze layers specified in freeze_parameters_name.

    Args:
        freeze_parameters_name: Layers that will be frozen during training.

    """
    count_frozen = 0
    for name, param in self.model.named_parameters():
        if any(x in name.split(".")[1] for x in freeze_parameters_name):
            log.debug("Freezing layer %s", name)
            param.requires_grad = False

        if not param.requires_grad:
            count_frozen += 1

    log.info("Frozen %d parameters", count_frozen)

generate_report()

Generate a report for the task.

Source code in quadra/tasks/classification.py
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
def generate_report(self) -> None:
    """Generate a report for the task."""
    if self.datamodule.class_to_idx is None:
        log.warning("No `class_to_idx` found in the datamodule, report will not be generated")
        return

    if isinstance(self.datamodule, MultilabelClassificationDataModule):
        log.warning("Report generation is not supported for multilabel classification tasks at the moment.")
        return

    log.info("Generating report!")
    if not self.run_test or self.config.trainer.get("fast_dev_run"):
        self.datamodule.setup(stage="test")
    best_model_path = self.trainer.checkpoint_callback.best_model_path  # type: ignore[union-attr]
    predictions_outputs = self.trainer.predict(
        model=self.module, datamodule=self.datamodule, ckpt_path=best_model_path
    )
    if not predictions_outputs:
        log.warning("There is no prediction to generate the report. Skipping report generation.")
        return
    all_outputs = [x[0] for x in predictions_outputs]
    if not all_outputs:
        log.warning("There is no prediction to generate the report. Skipping report generation.")
        return
    all_outputs = [item for sublist in all_outputs for item in sublist]
    all_targets = [target.tolist() for im, target in self.datamodule.test_dataloader()]
    all_targets = [item for sublist in all_targets for item in sublist]

    if self.module.gradcam:
        grayscale_cams = [x[1] for x in predictions_outputs]
        grayscale_cams = [item for sublist in grayscale_cams for item in sublist]
        grayscale_cams = np.stack(grayscale_cams)  # N x H x W
    else:
        grayscale_cams = None

    # creating confusion matrix
    idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}
    _, self.report_confmat, accuracy = get_results(
        test_labels=all_targets,
        pred_labels=all_outputs,
        idx_to_labels=idx_to_class,
    )
    output_folder_test = "test"
    test_dataloader = self.datamodule.test_dataloader()
    test_dataset = cast(ImageClassificationListDataset, test_dataloader.dataset)
    res = pd.DataFrame(
        {
            "sample": list(test_dataset.x),
            "real_label": all_targets,
            "pred_label": all_outputs,
        }
    )
    os.makedirs(output_folder_test, exist_ok=True)
    save_classification_result(
        results=res,
        output_folder=output_folder_test,
        confmat=self.report_confmat,
        accuracy=accuracy,
        test_dataloader=self.datamodule.test_dataloader(),
        config=self.config,
        output=self.output,
        grayscale_cams=grayscale_cams,
    )

    if len(self.logger) > 0:
        mflow_logger = get_mlflow_logger(trainer=self.trainer)
        tensorboard_logger = utils.get_tensorboard_logger(trainer=self.trainer)
        artifacts = glob.glob(os.path.join(output_folder_test, "**/*"), recursive=True)
        if self.config.core.get("upload_artifacts") and len(artifacts) > 0:
            if mflow_logger is not None:
                log.info("Uploading artifacts to MLFlow")
                for a in artifacts:
                    if os.path.isdir(a):
                        continue

                    dirname = Path(a).parent.name
                    mflow_logger.experiment.log_artifact(
                        run_id=mflow_logger.run_id,
                        local_path=a,
                        artifact_path=os.path.join("classification_output", dirname),
                    )
            if tensorboard_logger is not None:
                log.info("Uploading artifacts to Tensorboard")
                for a in artifacts:
                    if os.path.isdir(a):
                        continue

                    ext = os.path.splitext(a)[1].lower()

                    if ext in [".png", ".jpg", ".jpeg", ".bmp", ".tiff", ".tif", ".gif"]:
                        try:
                            img = cv2.imread(a)
                            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                        except cv2.error:
                            log.info("Could not upload artifact image %s", a)
                            continue
                        output_path = os.path.sep.join(a.split(os.path.sep)[-2:])
                        tensorboard_logger.experiment.add_image(output_path, img, 0, dataformats="HWC")
                    else:
                        utils.upload_file_tensorboard(a, tensorboard_logger)

module(module_config)

Set the module of the model.

Source code in quadra/tasks/classification.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
@LightningTask.module.setter
def module(self, module_config):
    """Set the module of the model."""
    module = hydra.utils.instantiate(
        module_config,
        model=self.model,
        optimizer=self.optimizer,
        lr_scheduler=self.scheduler,
        gradcam=self.gradcam,
    )
    if self.checkpoint_path is not None:
        log.info("Loading model from lightning checkpoint: %s", self.checkpoint_path)
        module = module.load_from_checkpoint(
            self.checkpoint_path,
            model=self.model,
            optimizer=self.optimizer,
            lr_scheduler=self.scheduler,
            criterion=module.criterion,
            gradcam=self.gradcam,
        )
    self._module = module

prepare()

Prepare the experiment.

Source code in quadra/tasks/classification.py
232
233
234
235
236
237
238
def prepare(self) -> None:
    """Prepare the experiment."""
    super().prepare()
    self.model = self.config.model
    self.optimizer = self.config.optimizer
    self.scheduler = self.config.scheduler
    self.module = self.config.model.module

test()

Test the model.

Source code in quadra/tasks/classification.py
240
241
242
243
244
245
246
247
248
def test(self) -> None:
    """Test the model."""
    if not self.config.trainer.get("fast_dev_run"):
        if self.trainer.checkpoint_callback is None:
            raise ValueError("Checkpoint callback is not defined!")
        log.info("Starting testing!")
        self.datamodule.setup(stage="test")
        log.info("Using best epoch's weights for testing.")
        self.trainer.test(datamodule=self.datamodule, model=self.module, ckpt_path="best")

ClassificationEvaluation(config, output, model_path, report=True, gradcam=False, device=None)

Bases: Evaluation[ClassificationDataModuleT]

Perform a test on an imported Classification pytorch model.

Parameters:

  • config (DictConfig) –

    Task configuration

  • output (DictConfig) –

    Configuration for the output

  • model_path (str) –

    Path to pytorch .pt model file

  • report (bool) –

    Whether to generate the report of the predictions

  • gradcam (bool) –

    Whether to compute gradcams

  • device (Optional[str]) –

    Device to use for evaluation. If None, the device is automatically determined

Source code in quadra/tasks/classification.py
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    model_path: str,
    report: bool = True,
    gradcam: bool = False,
    device: Optional[str] = None,
):
    super().__init__(config=config, model_path=model_path, device=device)
    self.report_path = "test_output"
    self.output = output
    self.report = report
    self.gradcam = gradcam
    self.cam: GradCAM

deployment_model property writable

Deployment model.

execute()

Execute the evaluation.

Source code in quadra/tasks/classification.py
1117
1118
1119
1120
1121
1122
1123
def execute(self) -> None:
    """Execute the evaluation."""
    self.prepare()
    self.test()
    if self.report:
        self.generate_report()
    self.finalize()

generate_report()

Generate a report for the task.

Source code in quadra/tasks/classification.py
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
def generate_report(self) -> None:
    """Generate a report for the task."""
    log.info("Generating report!")
    os.makedirs(self.report_path, exist_ok=True)

    test_dataset = cast(ImageClassificationListDataset, self.datamodule.test_dataloader().dataset)
    res = pd.DataFrame(
        {
            "sample": list(test_dataset.x),
            "real_label": self.metadata["test_labels"],
            "pred_label": self.metadata["test_results"],
        }
    )
    os.makedirs(self.report_path, exist_ok=True)
    save_classification_result(
        results=res,
        output_folder=self.report_path,
        confmat=self.metadata["test_confusion_matrix"],
        accuracy=self.metadata["test_accuracy"],
        test_dataloader=self.datamodule.test_dataloader(),
        config=self.config,
        output=self.output,
        grayscale_cams=self.metadata["grayscale_cams"],
    )

prepare()

Prepare the evaluation.

Source code in quadra/tasks/classification.py
1006
1007
1008
1009
1010
def prepare(self) -> None:
    """Prepare the evaluation."""
    super().prepare()
    self.datamodule = self.config.datamodule
    self.datamodule.class_to_idx = {v: int(k) for k, v in self.model_data["classes"].items()}

prepare_gradcam()

Initializing gradcam for the predictions.

Source code in quadra/tasks/classification.py
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
def prepare_gradcam(self) -> None:
    """Initializing gradcam for the predictions."""
    if isinstance(self.deployment_model.features_extractor, timm.models.resnet.ResNet):
        target_layers = [
            cast(BaseNetworkBuilder, self.deployment_model).features_extractor.layer4[-1]  # type: ignore[index]
        ]
        self.cam = GradCAM(
            model=self.deployment_model,
            target_layers=target_layers,
            use_cuda=(self.device != "cpu"),
        )
        for p in self.deployment_model.features_extractor.layer4[-1].parameters():
            p.requires_grad = True
    elif is_vision_transformer(cast(BaseNetworkBuilder, self.deployment_model).features_extractor):
        self.grad_rollout = VitAttentionGradRollout(self.deployment_model)
    else:
        log.warning("Gradcam not implemented for this backbone, it will not be computed")
        self.gradcam = False

test()

Perform test.

Source code in quadra/tasks/classification.py
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
def test(self) -> None:
    """Perform test."""
    log.info("Running test")
    # prepare_data() must be explicitly called because there is no training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="test")
    test_dataloader = self.datamodule.test_dataloader()

    image_labels = []
    predicted_classes = []
    grayscale_cams_list = []

    if self.gradcam:
        self.prepare_gradcam()

    with torch.set_grad_enabled(self.gradcam):
        for batch_item in tqdm(test_dataloader):
            im, target = batch_item
            im = im.to(self.device).detach()
            outputs = self.deployment_model(im).detach()
            probs = torch.softmax(outputs, dim=1)
            preds = torch.max(probs, dim=1).indices

            predicted_classes.append(preds.tolist())
            image_labels.extend(target.tolist())
            if self.gradcam:
                with torch.inference_mode(False):
                    im = im.clone()
                    if isinstance(self.deployment_model.features_extractor, timm.models.resnet.ResNet):
                        grayscale_cam = self.cam(input_tensor=im, targets=None)
                        grayscale_cams_list.append(torch.from_numpy(grayscale_cam))
                    elif is_vision_transformer(cast(BaseNetworkBuilder, self.deployment_model).features_extractor):
                        grayscale_cam_low_res = self.grad_rollout(input_tensor=im, targets_list=preds.tolist())
                        orig_shape = grayscale_cam_low_res.shape
                        new_shape = (orig_shape[0], im.shape[2], im.shape[3])
                        zoom_factors = tuple(np.array(new_shape) / np.array(orig_shape))
                        grayscale_cam = ndimage.zoom(grayscale_cam_low_res, zoom_factors, order=1)
                        grayscale_cams_list.append(torch.from_numpy(grayscale_cam))

    grayscale_cams: Optional[torch.Tensor] = None
    if self.gradcam:
        grayscale_cams = torch.cat(grayscale_cams_list, dim=0)

    predicted_classes = [item for sublist in predicted_classes for item in sublist]
    if self.datamodule.class_to_idx is not None:
        idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    _, pd_cm, test_accuracy = get_results(
        test_labels=image_labels,
        pred_labels=predicted_classes,
        idx_to_labels=idx_to_class,
    )
    log.info("Avg classification accuracy: %s", test_accuracy)

    # save results
    self.metadata["test_confusion_matrix"] = pd_cm
    self.metadata["test_accuracy"] = test_accuracy
    self.metadata["test_results"] = predicted_classes
    self.metadata["test_labels"] = image_labels
    self.metadata["grayscale_cams"] = grayscale_cams

Evaluation(config, model_path, device=None)

Bases: Generic[DataModuleT], Task[DataModuleT]

Base Evaluation Task with deployment models.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • model_path (str) –

    The model path.

  • device (Optional[str]) –

    Device to use for evaluation. If None, the device is automatically determined.

Source code in quadra/tasks/base.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
def __init__(
    self,
    config: DictConfig,
    model_path: str,
    device: Optional[str] = None,
):
    super().__init__(config=config)

    if device is None:
        self.device = utils.get_device()
    else:
        self.device = device

    self.config = config
    self.model_data: Dict[str, Any]
    self.model_path = model_path
    self._deployment_model: Union[RecursiveScriptModule, Module]
    self.deployment_model_type: str
    self.model_info_filename = "model.json"
    self.report_path = ""
    self.metadata = {"report_files": []}

deployment_model: Union[RecursiveScriptModule, nn.Module] property writable

Deployment model.

prepare()

Prepare the evaluation.

Source code in quadra/tasks/base.py
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
def prepare(self) -> None:
    """Prepare the evaluation."""
    with open(os.path.join(Path(self.model_path).parent, self.model_info_filename)) as f:
        self.model_data = json.load(f)

    if not isinstance(self.model_data, dict):
        raise ValueError("Model info file is not a valid json")

    for input_size in self.model_data["input_size"]:
        if len(input_size) != 3:
            continue

        # Adjust the transform for 2D models (CxHxW)
        # We assume that each input size has the same height and width
        if input_size[1] != self.config.transforms.input_height:
            log.warning(
                f"Input height of the model ({input_size[1]}) is different from the one specified "
                + f"in the config ({self.config.transforms.input_height}). Fixing the config."
            )
            self.config.transforms.input_height = input_size[1]

        if input_size[2] != self.config.transforms.input_width:
            log.warning(
                f"Input width of the model ({input_size[2]}) is different from the one specified "
                + f"in the config ({self.config.transforms.input_width}). Fixing the config."
            )
            self.config.transforms.input_width = input_size[2]

    self.deployment_model = self.model_path  # type: ignore[assignment]

LightningTask(config, checkpoint_path=None, run_test=False, report=False, export_config=None)

Bases: Generic[DataModuleT], Task[DataModuleT]

Base Experiment Task.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • checkpoint_path (Optional[str]) –

    The path to the checkpoint to load the model from. Defaults to None.

  • run_test (bool) –

    Whether to run the test after training. Defaults to False.

  • report (bool) –

    Whether to generate a report. Defaults to False.

  • export_config (Optional[DictConfig]) –

    Dictionary containing the export configuration, it should contain the following keys:

    • types: List of types to export.
    • input_shapes: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/base.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def __init__(
    self,
    config: DictConfig,
    checkpoint_path: Optional[str] = None,
    run_test: bool = False,
    report: bool = False,
    export_config: Optional[DictConfig] = None,
):
    super().__init__(config, export_config=export_config)
    self.config = config
    self.checkpoint_path = checkpoint_path
    self.run_test = run_test
    self.report = report
    self._module: LightningModule
    self._devices: Union[int, List[int]]
    self._callbacks: List[Callback]
    self._logger: List[Logger]
    self._trainer: Trainer

callbacks: List[Callback] property writable

List[Callback]: The callbacks.

devices: Union[int, List[int]] property writable

List[int]: The devices ids.

logger: List[Logger] property writable

List[Logger]: The loggers.

module: LightningModule property writable

trainer: Trainer property writable

add_callback(callback)

Add a callback to the trainer.

Parameters:

  • callback (Callback) –

    The callback to add

Source code in quadra/tasks/base.py
296
297
298
299
300
301
302
303
def add_callback(self, callback: Callback):
    """Add a callback to the trainer.

    Args:
        callback: The callback to add
    """
    if hasattr(self.trainer, "callbacks") and isinstance(self.trainer.callbacks, list):
        self.trainer.callbacks.append(callback)

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/base.py
305
306
307
308
309
310
311
312
313
314
315
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.train()
    if self.run_test:
        self.test()
    if self.export_config is not None and len(self.export_config.types) > 0:
        self.export()
    if self.report:
        self.generate_report()
    self.finalize()

finalize()

Finalize the experiment.

Source code in quadra/tasks/base.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
def finalize(self) -> None:
    """Finalize the experiment."""
    super().finalize()
    utils.finish(
        config=self.config,
        module=self.module,
        datamodule=self.datamodule,
        trainer=self.trainer,
        callbacks=self.callbacks,
        logger=self.logger,
        export_folder=self.export_folder,
    )

    if not self.config.trainer.get("fast_dev_run"):
        if self.trainer.checkpoint_callback is not None and hasattr(
            self.trainer.checkpoint_callback, "best_model_path"
        ):
            log.info("Best model ckpt: %s", self.trainer.checkpoint_callback.best_model_path)

prepare()

Prepare the experiment.

Source code in quadra/tasks/base.py
135
136
137
138
139
140
141
142
143
144
145
146
147
def prepare(self) -> None:
    """Prepare the experiment."""
    super().prepare()

    # First setup loggers since some callbacks might need logger setup correctly.
    if "logger" in self.config:
        self.logger = self.config.logger

    if "callbacks" in self.config:
        self.callbacks = self.config.callbacks

    self.devices = self.config.trainer.devices
    self.trainer = self.config.trainer

test()

Test the model.

Source code in quadra/tasks/base.py
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def test(self) -> Any:
    """Test the model."""
    log.info("Starting testing!")

    best_model = None
    if (
        self.trainer.checkpoint_callback is not None
        and hasattr(self.trainer.checkpoint_callback, "best_model_path")
        and self.trainer.checkpoint_callback.best_model_path is not None
    ):
        best_model = self.trainer.checkpoint_callback.best_model_path

    if best_model is None:
        log.warning(
            "No best checkpoint model found, using last weights for test, this might lead to worse results, "
            "consider using a checkpoint callback."
        )

    return self.trainer.test(model=self.module, datamodule=self.datamodule, ckpt_path=best_model)

train()

Train the model.

Source code in quadra/tasks/base.py
246
247
248
249
250
251
252
253
254
255
def train(self) -> None:
    """Train the model."""
    log.info("Starting training!")
    utils.log_hyperparameters(
        config=self.config,
        model=self.module,
        trainer=self.trainer,
    )

    self.trainer.fit(model=self.module, datamodule=self.datamodule)

PatchSklearnClassification(config, output, device, export_config=None)

Bases: Task[PatchSklearnClassificationDataModule]

Patch classification using torch backbone for feature extraction and sklearn to learn a linear classifier.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • device (str) –

    The device to use

  • output (DictConfig) –

    Dictionary defining which kind of outputs to generate. Defaults to None.

  • export_config (Optional[DictConfig]) –

    Dictionary containing the export configuration, it should contain the following keys:

    • types: List of types to export.
    • input_shapes: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/patch.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    device: str,
    export_config: Optional[DictConfig] = None,
):
    super().__init__(config=config, export_config=export_config)
    self.device: str = device
    self.output: DictConfig = output
    self.return_polygon: bool = True
    self.reconstruction_results: Dict[str, Any]
    self._backbone: torch.nn.Module
    self._trainer: SklearnClassificationTrainer
    self._model: ClassifierMixin
    self.metadata: Dict[str, Any] = {
        "test_confusion_matrix": [],
        "test_accuracy": [],
        "test_results": [],
        "test_labels": [],
    }
    self.export_folder: str = "deployment_model"

backbone: torch.nn.Module property writable

model: ClassifierMixin property writable

sklearn.base.ClassifierMixin: The model.

trainer: SklearnClassificationTrainer property writable

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/patch.py
262
263
264
265
266
267
268
269
270
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.train()
    if self.output.report:
        self.generate_report()
    if self.export_config is not None and len(self.export_config.types) > 0:
        self.export()
    self.finalize()

export()

Generate deployment model for the task.

Source code in quadra/tasks/patch.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def export(self) -> None:
    """Generate deployment model for the task."""
    if self.export_config is None or len(self.export_config.types) == 0:
        log.info("No export type specified skipping export")
        return

    os.makedirs(self.export_folder, exist_ok=True)

    input_shapes = self.export_config.input_shapes

    for export_type in self.export_config.types:
        if export_type == "torchscript":
            out = export_torchscript_model(
                model=self.backbone,
                input_shapes=input_shapes,
                output_path=self.export_folder,
                half_precision=False,
            )

            if out is None:
                log.warning("Skipping torchscript export since the model is not supported")
                continue

            _, input_shapes = out

    dump(self.model, os.path.join(self.export_folder, "classifier.joblib"))

    dataset_info = self.datamodule.info

    horizontal_patches = dataset_info.patch_number[1] if dataset_info.patch_number is not None else None
    vertical_patches = dataset_info.patch_number[0] if dataset_info.patch_number is not None else None
    patch_height = dataset_info.patch_size[0] if dataset_info.patch_size is not None else None
    patch_width = dataset_info.patch_size[1] if dataset_info.patch_size is not None else None
    overlap = dataset_info.overlap

    idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    model_json = {
        "input_size": input_shapes,
        "classes": idx_to_class,
        "mean": self.config.transforms.mean,
        "std": self.config.transforms.std,
        "horizontal_patches": horizontal_patches,
        "vertical_patches": vertical_patches,
        "patch_height": patch_height,
        "patch_width": patch_width,
        "overlap": overlap,
        "reconstruction_method": self.output.reconstruction_method,
        "class_to_skip": self.datamodule.class_to_skip_training,
    }

    with open(os.path.join(self.export_folder, "model.json"), "w") as f:
        json.dump(model_json, f, cls=utils.HydraEncoder)

generate_report()

Generate the report for the task.

Source code in quadra/tasks/patch.py
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def generate_report(self) -> None:
    """Generate the report for the task."""
    log.info("Generating report!")
    os.makedirs(self.output.folder, exist_ok=True)

    c_matrix = self.metadata["test_confusion_matrix"]
    idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    datamodule: PatchSklearnClassificationDataModule = self.datamodule
    val_img_info: List[PatchDatasetFileFormat] = datamodule.info.val_files
    for img_info in val_img_info:
        if not os.path.isabs(img_info.image_path):
            img_info.image_path = os.path.join(datamodule.data_path, img_info.image_path)
        if img_info.mask_path is not None and not os.path.isabs(img_info.mask_path):
            img_info.mask_path = os.path.join(datamodule.data_path, img_info.mask_path)

    false_region_bad, false_region_good, true_region_bad, reconstructions = compute_patch_metrics(
        test_img_info=val_img_info,
        test_results=self.metadata["test_results"],
        patch_num_h=datamodule.info.patch_number[0] if datamodule.info.patch_number is not None else None,
        patch_num_w=datamodule.info.patch_number[1] if datamodule.info.patch_number is not None else None,
        patch_h=datamodule.info.patch_size[0] if datamodule.info.patch_size is not None else None,
        patch_w=datamodule.info.patch_size[1] if datamodule.info.patch_size is not None else None,
        overlap=datamodule.info.overlap,
        idx_to_class=idx_to_class,
        return_polygon=self.return_polygon,
        patch_reconstruction_method=self.output.reconstruction_method,
        annotated_good=datamodule.info.annotated_good,
    )

    self.reconstruction_results = {
        "false_region_bad": false_region_bad,
        "false_region_good": false_region_good,
        "true_region_bad": true_region_bad,
        "reconstructions": reconstructions,
        "reconstructions_type": "polygon" if self.return_polygon else "rle",
        "patch_reconstruction_method": self.output.reconstruction_method,
    }

    with open("reconstruction_results.json", "w") as f:
        json.dump(
            self.reconstruction_results,
            f,
            cls=RleEncoder,
        )

    if hasattr(self.datamodule, "class_to_skip_training") and self.datamodule.class_to_skip_training is not None:
        ignore_classes = [self.datamodule.class_to_idx[x] for x in self.datamodule.class_to_skip_training]
    else:
        ignore_classes = None
    val_dataloader = self.datamodule.val_dataloader()
    save_classification_result(
        results=self.metadata["test_results"],
        output_folder=self.output.folder,
        confusion_matrix=c_matrix,
        accuracy=self.metadata["test_accuracy"],
        test_dataloader=val_dataloader,
        config=self.config,
        output=self.output,
        reconstructions=reconstructions,
        ignore_classes=ignore_classes,
    )

prepare()

Prepare the experiment.

Source code in quadra/tasks/patch.py
92
93
94
95
96
97
98
def prepare(self) -> None:
    """Prepare the experiment."""
    self.datamodule = self.config.datamodule
    self.backbone = self.config.backbone
    self.model = self.config.model

    self.trainer = self.config.trainer

train()

Train the model.

Source code in quadra/tasks/patch.py
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def train(self) -> None:
    """Train the model."""
    log.info("Starting training...!")
    # prepare_data() must be explicitly called if the task does not include a lightining training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="fit")
    class_to_keep = None
    if hasattr(self.datamodule, "class_to_skip_training") and self.datamodule.class_to_skip_training is not None:
        class_to_keep = [
            x for x in self.datamodule.class_to_idx.keys() if x not in self.datamodule.class_to_skip_training
        ]

    self.model = self.config.model
    self.trainer.change_classifier(self.model)
    train_dataloader = self.datamodule.train_dataloader()
    val_dataloader = self.datamodule.val_dataloader()
    train_dataset = cast(PatchSklearnClassificationTrainDataset, train_dataloader.dataset)
    self.trainer.fit(train_dataloader=train_dataloader)
    _, pd_cm, accuracy, res, _ = self.trainer.test(
        test_dataloader=val_dataloader,
        class_to_keep=class_to_keep,
        idx_to_class=train_dataset.idx_to_class,
        predict_proba=True,
    )

    # save results
    self.metadata["test_confusion_matrix"] = pd_cm
    self.metadata["test_accuracy"] = accuracy
    self.metadata["test_results"] = res
    self.metadata["test_labels"] = [
        train_dataset.idx_to_class[i] if i != -1 else "N/A" for i in res["real_label"].unique().tolist()
    ]

PatchSklearnTestClassification(config, output, model_path, device='cpu')

Bases: Evaluation[PatchSklearnClassificationDataModule]

Perform a test of an already trained classification model.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • output (DictConfig) –

    where to save resultss

  • model_path (str) –

    path to trained model from PatchSklearnClassification task.

  • device (str) –

    the device where to run the model (cuda or cpu). Defaults to 'cpu'.

Source code in quadra/tasks/patch.py
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    model_path: str,
    device: str = "cpu",
):
    super().__init__(config=config, model_path=model_path, device=device)
    self.output = output
    self._backbone: torch.nn.Module
    self._classifier: ClassifierMixin
    self.class_to_idx: Dict[str, int]
    self.idx_to_class: Dict[int, str]
    self.metadata: Dict[str, Any] = {
        "test_confusion_matrix": None,
        "test_accuracy": None,
        "test_results": None,
        "test_labels": None,
    }
    self.class_to_skip: List[str] = []
    self.reconstruction_results: Dict[str, Any]
    self.return_polygon: bool = True

backbone: torch.nn.Module property writable

classifier: ClassifierMixin property writable

deployment_model property writable

Deployment model.

trainer: SklearnClassificationTrainer property writable

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/patch.py
480
481
482
483
484
485
486
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.test()
    if self.output.report:
        self.generate_report()
    self.finalize()

generate_report()

Generate a report for the task.

Source code in quadra/tasks/patch.py
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
def generate_report(self) -> None:
    """Generate a report for the task."""
    log.info("Generating report!")
    os.makedirs(self.output.folder, exist_ok=True)

    c_matrix = self.metadata["test_confusion_matrix"]
    idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    datamodule: PatchSklearnClassificationDataModule = self.datamodule
    test_img_info = datamodule.info.test_files
    for img_info in test_img_info:
        if not os.path.isabs(img_info.image_path):
            img_info.image_path = os.path.join(datamodule.data_path, img_info.image_path)
        if img_info.mask_path is not None and not os.path.isabs(img_info.mask_path):
            img_info.mask_path = os.path.join(datamodule.data_path, img_info.mask_path)

    false_region_bad, false_region_good, true_region_bad, reconstructions = compute_patch_metrics(
        test_img_info=test_img_info,
        test_results=self.metadata["test_results"],
        patch_num_h=datamodule.info.patch_number[0] if datamodule.info.patch_number is not None else None,
        patch_num_w=datamodule.info.patch_number[1] if datamodule.info.patch_number is not None else None,
        patch_h=datamodule.info.patch_size[0] if datamodule.info.patch_size is not None else None,
        patch_w=datamodule.info.patch_size[1] if datamodule.info.patch_size is not None else None,
        overlap=datamodule.info.overlap,
        idx_to_class=idx_to_class,
        return_polygon=self.return_polygon,
        patch_reconstruction_method=self.output.reconstruction_method,
        annotated_good=datamodule.info.annotated_good,
    )

    self.reconstruction_results = {
        "false_region_bad": false_region_bad,
        "false_region_good": false_region_good,
        "true_region_bad": true_region_bad,
        "reconstructions": reconstructions,
        "reconstructions_type": "polygon" if self.return_polygon else "rle",
        "patch_reconstruction_method": self.output.reconstruction_method,
    }

    with open("reconstruction_results.json", "w") as f:
        json.dump(
            self.reconstruction_results,
            f,
            cls=RleEncoder,
        )

    if self.class_to_skip is not None:
        ignore_classes = [datamodule.class_to_idx[x] for x in self.class_to_skip]
    else:
        ignore_classes = None
    test_dataloader = self.datamodule.test_dataloader()
    save_classification_result(
        results=self.metadata["test_results"],
        output_folder=self.output.folder,
        confusion_matrix=c_matrix,
        accuracy=self.metadata["test_accuracy"],
        test_dataloader=test_dataloader,
        config=self.config,
        output=self.output,
        reconstructions=reconstructions,
        ignore_classes=ignore_classes,
    )

prepare()

Prepare the experiment.

Source code in quadra/tasks/patch.py
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
def prepare(self) -> None:
    """Prepare the experiment."""
    super().prepare()

    idx_to_class = {}
    class_to_idx = {}
    for k, v in self.model_data["classes"].items():
        idx_to_class[int(k)] = v
        class_to_idx[v] = int(k)

    self.idx_to_class = idx_to_class
    self.class_to_idx = class_to_idx
    self.config.datamodule.class_to_idx = class_to_idx

    self.datamodule = self.config.datamodule
    # Configure trainer
    self.trainer = self.config.trainer

test()

Run the test.

Source code in quadra/tasks/patch.py
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def test(self) -> None:
    """Run the test."""
    # prepare_data() must be explicitly called because there is no lightning training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="test")
    test_dataloader = self.datamodule.test_dataloader()

    self.class_to_skip = self.model_data["class_to_skip"] if hasattr(self.model_data, "class_to_skip") else None
    class_to_keep = None

    if self.class_to_skip is not None:
        class_to_keep = [x for x in self.datamodule.class_to_idx.keys() if x not in self.class_to_skip]
    _, pd_cm, accuracy, res, _ = self.trainer.test(
        test_dataloader=test_dataloader,
        idx_to_class=self.idx_to_class,
        predict_proba=True,
        class_to_keep=class_to_keep,
    )

    # save results
    self.metadata["test_confusion_matrix"] = pd_cm
    self.metadata["test_accuracy"] = accuracy
    self.metadata["test_results"] = res
    self.metadata["test_labels"] = [
        self.idx_to_class[i] if i != -1 else "N/A" for i in res["real_label"].unique().tolist()
    ]

PlaceholderTask

Bases: Task

Placeholder task.

execute()

Execute the task and all the steps.

Source code in quadra/tasks/base.py
321
322
323
324
325
def execute(self) -> None:
    """Execute the task and all the steps."""
    log.info("Running Placeholder Task.")
    log.info("Quadra Version: %s", str(get_version()))
    log.info("If you are reading this, it means that library is installed correctly!")

SSL(config, run_test=False, report=False, checkpoint_path=None, export_config=None)

Bases: LightningTask

SSL Task.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • checkpoint_path (Optional[str]) –

    The path to the checkpoint to load the model from Defaults to None

  • report (bool) –

    Whether to create the report

  • run_test (bool) –

    Whether to run final test

  • export_config (Optional[DictConfig]) –

    Dictionary containing the export configuration, it should contain the following keys:

    • types: List of types to export.
    • input_shapes: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/ssl.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def __init__(
    self,
    config: DictConfig,
    run_test: bool = False,
    report: bool = False,
    checkpoint_path: Optional[str] = None,
    export_config: Optional[DictConfig] = None,
):
    super().__init__(
        config=config,
        checkpoint_path=checkpoint_path,
        run_test=run_test,
        report=report,
        export_config=export_config,
    )
    self._backbone: nn.Module
    self._optimizer: torch.optim.Optimizer
    self._lr_scheduler: torch.optim.lr_scheduler._LRScheduler
    self.export_folder = "deployment_model"

optimizer: torch.optim.Optimizer property writable

Get the optimizer.

scheduler: torch.optim.lr_scheduler._LRScheduler property writable

Get the scheduler.

export()

Deploy a model ready for production.

Source code in quadra/tasks/ssl.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def export(self) -> None:
    """Deploy a model ready for production."""
    if self.export_config is None or len(self.export_config.types) == 0:
        log.info("No export type specified skipping export")
        return

    mean = self.config.transforms.mean
    std = self.config.transforms.std
    half_precision = int(self.trainer.precision) == 16

    input_shapes = self.export_config.input_shapes

    for export_type in self.export_config.types:
        if export_type == "torchscript":
            out = export_torchscript_model(
                model=cast(nn.Module, self.module.model),
                input_shapes=input_shapes,
                output_path=self.export_folder,
                half_precision=half_precision,
            )

            if out is None:
                log.warning("Skipping torchscript export since the model is not supported")
                continue

            _, input_shapes = out

    model_json = {
        "input_size": input_shapes,
        "classes": None,
        "mean": mean,
        "std": std,
    }

    with open(os.path.join(self.export_folder, "model.json"), "w") as f:
        json.dump(model_json, f, cls=utils.HydraEncoder)

learnable_parameters()

Get the learnable parameters.

Source code in quadra/tasks/ssl.py
59
60
61
def learnable_parameters(self) -> List[nn.Parameter]:
    """Get the learnable parameters."""
    raise NotImplementedError("This method must be implemented by the subclass")

test()

Test the model.

Source code in quadra/tasks/ssl.py
94
95
96
97
98
99
def test(self) -> None:
    """Test the model."""
    if self.run_test and not self.config.trainer.get("fast_dev_run"):
        log.info("Starting testing!")
        log.info("Using last epoch's weights for testing.")
        self.trainer.test(datamodule=self.datamodule, model=self.module, ckpt_path=None)

Segmentation(config, num_viz_samples=5, checkpoint_path=None, run_test=False, evaluate=None, report=False, export_config=None)

Bases: Generic[SegmentationDataModuleT], LightningTask[SegmentationDataModuleT]

Task for segmentation.

Parameters:

  • config (DictConfig) –

    Config object

  • num_viz_samples (int) –

    Number of samples to visualize. Defaults to 5.

  • checkpoint_path (Optional[str]) –

    Path to the checkpoint to load the model from. Defaults to None.

  • run_test (bool) –

    If True, run test after training. Defaults to False.

  • evaluate (Optional[DictConfig]) –

    Dict with evaluation parameters. Defaults to None.

  • report (bool) –

    If True, create report after training. Defaults to False.

  • export_config (Optional[DictConfig]) –

    Dictionary containing the export configuration, it should contain the following keys:

    • types: List of types to export.
    • input_shapes: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/segmentation.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def __init__(
    self,
    config: DictConfig,
    num_viz_samples: int = 5,
    checkpoint_path: Optional[str] = None,
    run_test: bool = False,
    evaluate: Optional[DictConfig] = None,
    report: bool = False,
    export_config: Optional[DictConfig] = None,
):
    super().__init__(
        config=config,
        checkpoint_path=checkpoint_path,
        run_test=run_test,
        report=report,
        export_config=export_config,
    )
    self.evaluate = evaluate
    self.num_viz_samples = num_viz_samples
    self.export_folder: str = "deployment_model"
    self.exported_model_path: Optional[str] = None
    if self.evaluate and any(self.evaluate.values()):
        if (
            self.export_config is None
            or len(self.export_config.types) == 0
            or "torchscript" not in self.export_config.types
        ):
            log.info(
                "Evaluation is enabled, but training does not export a deployment model. Automatically export the "
                "model as torchscript."
            )
            if self.export_config is None:
                self.export_config = DictConfig({"types": ["torchscript"]})
            else:
                self.export_config.types.append("torchscript")

        if not self.report:
            log.info("Evaluation is enabled, but reporting is disabled. Enabling reporting automatically.")
            self.report = True

module: SegmentationModel property writable

Get the module.

export()

Generate a deployment model for the task.

Source code in quadra/tasks/segmentation.py
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def export(self) -> None:
    """Generate a deployment model for the task."""
    log.info("Exporting model ready for deployment")
    # Get best model!
    if self.trainer.checkpoint_callback is None:
        raise ValueError("No checkpoint callback found in the trainer")
    best_model_path = self.trainer.checkpoint_callback.best_model_path  # type: ignore[attr-defined]
    log.info("Loaded best model from %s", best_model_path)

    module = self.module.load_from_checkpoint(
        best_model_path,
        model=self.module.model,
        loss_fun=None,
        optimizer=self.module.optimizer,
        lr_scheduler=self.module.schedulers,
    )

    if "idx_to_class" not in self.config.datamodule:
        log.info("No idx_to_class key")
        classes = {0: "good", 1: "bad"}
    else:
        log.info("idx_to_class is present")
        classes = self.config.datamodule.idx_to_class

    if self.export_config is None:
        raise ValueError(
            "No export type specified. This should not happen, please check if you have set "
            "the export_type or assign it to a default value."
        )

    input_shapes = self.export_config.input_shapes

    half_precision = self.trainer.precision == 16

    for export_type in self.export_config.types:
        if export_type == "torchscript":
            out = export_torchscript_model(
                model=module.model,
                input_shapes=input_shapes,
                output_path=self.export_folder,
                half_precision=half_precision,
            )

            if out is None:
                log.warning("Skipping torchscript export since the model is not supported")
                continue

            self.exported_model_path, input_shapes = out

    if input_shapes is None:
        log.warning("Not able to export the model in any format")

    model_json = {
        "input_size": input_shapes,
        "classes": classes,
        "mean": self.config.transforms.mean,
        "std": self.config.transforms.std,
    }

    with open(os.path.join(self.export_folder, "model.json"), "w") as f:
        json.dump(model_json, f, cls=utils.HydraEncoder)

generate_report()

Generate a report for the task.

Source code in quadra/tasks/segmentation.py
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
def generate_report(self) -> None:
    """Generate a report for the task."""
    if self.evaluate is not None:
        log.info("Generating evaluation report!")
        eval_tasks: List[SegmentationEvaluation] = []
        if self.evaluate.analysis:
            if self.exported_model_path is None:
                raise ValueError(
                    "Exported model path is not set yet but the task tries to do an analysis evaluation"
                )
            eval_task = SegmentationAnalysisEvaluation(
                config=self.config,
                model_path=self.exported_model_path,
            )
            eval_tasks.append(eval_task)
        for task in eval_tasks:
            task.execute()

        if len(self.logger) > 0:
            mflow_logger = get_mlflow_logger(trainer=self.trainer)
            tensorboard_logger = utils.get_tensorboard_logger(trainer=self.trainer)

            if mflow_logger is not None and self.config.core.get("upload_artifacts"):
                for task in eval_tasks:
                    for file in task.metadata["report_files"]:
                        mflow_logger.experiment.log_artifact(
                            run_id=mflow_logger.run_id, local_path=file, artifact_path=task.report_path
                        )

            if tensorboard_logger is not None and self.config.core.get("upload_artifacts"):
                for task in eval_tasks:
                    for file in task.metadata["report_files"]:
                        ext = os.path.splitext(file)[1].lower()

                        if ext in [".png", ".jpg", ".jpeg", ".bmp", ".tiff", ".tif", ".gif"]:
                            try:
                                img = cv2.imread(file)
                                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                            except cv2.error:
                                log.info("Could not upload artifact image %s", file)
                                continue

                            tensorboard_logger.experiment.add_image(
                                os.path.basename(file), img, 0, dataformats="HWC"
                            )
                        else:
                            utils.upload_file_tensorboard(file, tensorboard_logger)

prepare()

Prepare the task.

Source code in quadra/tasks/segmentation.py
119
120
121
122
def prepare(self) -> None:
    """Prepare the task."""
    super().prepare()
    self.module = self.config.model

SegmentationAnalysisEvaluation(config, model_path, device='cpu')

Bases: SegmentationEvaluation

Segmentation Analysis Evaluation Task

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • model_path (str) –

    The model path.

  • device (Optional[str]) –

    Device to use for evaluation. If None, the device is automatically determined.

Source code in quadra/tasks/segmentation.py
311
312
313
314
315
316
317
318
def __init__(
    self,
    config: DictConfig,
    model_path: str,
    device: Optional[str] = "cpu",
):
    super().__init__(config=config, model_path=model_path, device=device)
    self.test_output: Dict[str, Any] = {}

generate_report()

Generate a report.

Source code in quadra/tasks/segmentation.py
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def generate_report(self) -> None:
    """Generate a report."""
    log.info("Generating analysis report")

    for stage, output in self.test_output.items():
        image_mean = OmegaConf.to_container(self.config.transforms.mean)
        if not isinstance(image_mean, list) or any(not isinstance(x, (int, float)) for x in image_mean):
            raise ValueError("Image mean is not a list of float or integer values, please check your config")
        image_std = OmegaConf.to_container(self.config.transforms.std)
        if not isinstance(image_std, list) or any(not isinstance(x, (int, float)) for x in image_std):
            raise ValueError("Image std is not a list of float or integer values, please check your config")
        reports = create_mask_report(
            stage=stage,
            output=output,
            report_path="analysis_report",
            mean=image_mean,
            std=image_std,
            analysis=True,
            nb_samples=10,
            apply_sigmoid=True,
            show_orj_predictions=True,
        )
        self.metadata["report_files"].extend(reports)
        log.info("%s analysis report completed.", stage)

test()

Run testing.

Source code in quadra/tasks/segmentation.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
def test(self) -> None:
    """Run testing."""
    log.info("Starting testing")

    stages: List[str] = []
    dataloaders: List[torch.utils.data.DataLoader] = []
    self.datamodule.setup(stage="fit")
    self.datamodule.setup(stage="test")
    if self.datamodule.train_dataset_available:
        stages.append("train")
        dataloaders.append(self.datamodule.train_dataloader())
        if self.datamodule.val_dataset_available:
            stages.append("val")
            dataloaders.append(self.datamodule.val_dataloader())
    if self.datamodule.test_dataset_available:
        stages.append("test")
        dataloaders.append(self.datamodule.test_dataloader())
    for stage, dataloader in zip(stages, dataloaders):
        image_list, mask_list, mask_pred_list, label_list = [], [], [], []
        for batch in dataloader:
            images, masks, labels = batch
            images = images.to(self.device)
            if len(masks.shape) == 3:  # BxHxW -> Bx1xHxW
                masks = masks.unsqueeze(1)
            with torch.no_grad():
                image_list.append(images.cpu())
                mask_list.append(masks.cpu())
                mask_pred_list.append(self.deployment_model(images.to(self.device)).cpu())
                label_list.append(labels.cpu())

        output = {
            "image": torch.cat(image_list, dim=0),
            "mask": torch.cat(mask_list, dim=0),
            "label": torch.cat(label_list, dim=0),
            "mask_pred": torch.cat(mask_pred_list, dim=0),
        }
        self.test_output[stage] = output

train()

Skip training.

Source code in quadra/tasks/segmentation.py
320
321
def train(self) -> None:
    """Skip training."""

SegmentationEvaluation(config, model_path, device='cpu')

Bases: Evaluation[SegmentationDataModuleT]

Segmentation Evaluation Task with deployment models.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • model_path (str) –

    The experiment path.

  • device (Optional[str]) –

    Device to use for evaluation. If None, the device is automatically determined.

Raises:

  • ValueError

    If the model path is not provided

Source code in quadra/tasks/segmentation.py
247
248
249
250
251
252
253
254
def __init__(
    self,
    config: DictConfig,
    model_path: str,
    device: Optional[str] = "cpu",
):
    super().__init__(config=config, model_path=model_path, device=device)
    self.config = config

inference(dataloader, deployment_model, device)

Run inference on the dataloader and return the output.

Parameters:

  • dataloader (DataLoader) –

    The dataloader to run inference on

  • deployment_model (torch.nn.Module) –

    The deployment model to use

  • device (torch.device) –

    The device to run inference on

Source code in quadra/tasks/segmentation.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
@torch.no_grad()
def inference(
    self, dataloader: DataLoader, deployment_model: torch.nn.Module, device: torch.device
) -> Dict[str, torch.Tensor]:
    """Run inference on the dataloader and return the output.

    Args:
        dataloader: The dataloader to run inference on
        deployment_model: The deployment model to use
        device: The device to run inference on
    """
    image_list, mask_list, mask_pred_list, label_list = [], [], [], []
    for batch in dataloader:
        images, masks, labels = batch
        images = images.to(device)
        masks = masks.to(device)
        labels = labels.to(device)
        image_list.append(images.cpu())
        mask_list.append(masks.cpu())
        mask_pred_list.append(deployment_model(images.to(device)).cpu())
        label_list.append(labels.cpu())
    output = {
        "image": torch.cat(image_list, dim=0),
        "mask": torch.cat(mask_list, dim=0),
        "label": torch.cat(label_list, dim=0),
        "mask_pred": torch.cat(mask_pred_list, dim=0),
    }
    return output

prepare()

Prepare the evaluation.

Source code in quadra/tasks/segmentation.py
259
260
261
262
263
264
265
266
267
268
269
270
271
def prepare(self) -> None:
    """Prepare the evaluation."""
    super().prepare()
    # TODO: Why we propagate mean and std only in Segmentation?
    self.config.transforms.mean = self.model_data["mean"]
    self.config.transforms.std = self.model_data["std"]
    # Setup datamodule
    if hasattr(self.config.datamodule, "idx_to_class"):
        idx_to_class = self.model_data["classes"]  # dict {index: class}
        self.config.datamodule.idx_to_class = idx_to_class
    self.datamodule = self.config.datamodule
    # prepare_data() must be explicitly called because there is no lightning training
    self.datamodule.prepare_data()

save_config()

Skip saving the config.

Source code in quadra/tasks/segmentation.py
256
257
def save_config(self) -> None:
    """Skip saving the config."""

SklearnClassification(config, output, device, export_config=None)

Bases: Generic[SklearnClassificationDataModuleT], Task[SklearnClassificationDataModuleT]

Sklearn classification task.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • device (str) –

    The device to use. Defaults to None.

  • output (DictConfig) –

    Dictionary defining which kind of outputs to generate. Defaults to None.

  • export_config (Optional[DictConfig]) –

    Dictionary containing the export configuration, it should contain the following keys:

    • types: List of types to export.
    • input_shapes: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/classification.py
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    device: str,
    export_config: Optional[DictConfig] = None,
):
    super().__init__(config=config, export_config=export_config)

    self._device = device
    self.output = output
    self._backbone: nn.Module
    self._trainer: SklearnClassificationTrainer
    self._model: ClassifierMixin
    self.metadata: Dict[str, Any] = {
        "test_confusion_matrix": [],
        "test_accuracy": [],
        "test_results": [],
        "test_labels": [],
    }
    self.export_folder = "deployment_model"
    self.deploy_info_file = "model.json"
    self.train_dataloader_list: List[torch.utils.data.DataLoader] = []
    self.test_dataloader_list: List[torch.utils.data.DataLoader] = []

backbone: nn.Module property writable

model: ClassifierMixin property writable

sklearn.base.ClassifierMixin: The model.

trainer: SklearnClassificationTrainer property writable

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/classification.py
738
739
740
741
742
743
744
745
746
747
748
749
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.train()
    if self.output.report:
        self.generate_report()
    self.train_full_data()
    if self.export_config is not None and len(self.export_config.types) > 0:
        self.export()
    if self.output.test_full_data:
        self.test_full_data()
    self.finalize()

export()

Generate deployment model for the task.

Source code in quadra/tasks/classification.py
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
def export(self) -> None:
    """Generate deployment model for the task."""
    if self.export_config is None or len(self.export_config.types) == 0:
        log.info("No export type specified skipping export")
        return

    input_shapes = self.export_config.input_shapes

    for export_type in self.export_config.types:
        if export_type == "torchscript":
            out = export_torchscript_model(
                model=self.backbone,
                input_shapes=input_shapes,
                output_path=self.export_folder,
                half_precision=False,
            )

            if out is None:
                log.warning("Skipping torchscript export since the model is not supported")
                continue

            _, input_shapes = out
        elif export_type == "pytorch":
            os.makedirs(self.export_folder, exist_ok=True)
            # We only need to save classifier.joblib + backbone config file
            with open(os.path.join(self.export_folder, "backbone_config.yaml"), "w") as f:
                OmegaConf.save(self.config.backbone, f, resolve=True)
            log.info("backbone_config.yaml saved (export type 'pytorch')")
        else:
            log.warning("Export type: %s not implemented", export_type)

    dump(self.model, os.path.join(self.export_folder, "classifier.joblib"))

    idx_to_class = {v: k for k, v in self.datamodule.full_dataset.class_to_idx.items()}

    model_json = {
        "input_size": input_shapes,
        "classes": idx_to_class,
        "mean": list(self.config.transforms.mean),
        "std": list(self.config.transforms.std),
    }

    with open(os.path.join(self.export_folder, self.deploy_info_file), "w") as f:
        json.dump(model_json, f)

generate_report()

Generate report for the task.

Source code in quadra/tasks/classification.py
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
def generate_report(self) -> None:
    """Generate report for the task."""
    log.info("Generating report!")

    cm_list = []

    for count in range(len(self.metadata["test_accuracy"])):
        current_output_folder = f"{self.output.folder}_{count}"
        os.makedirs(current_output_folder, exist_ok=True)

        c_matrix = self.metadata["test_confusion_matrix"][count]
        cm_list.append(c_matrix)
        save_classification_result(
            results=self.metadata["test_results"][count],
            output_folder=current_output_folder,
            confmat=c_matrix,
            accuracy=self.metadata["test_accuracy"][count],
            test_dataloader=self.test_dataloader_list[count],
            config=self.config,
            output=self.output,
        )
    final_confusion_matrix = sum(cm_list)

    self.metadata["final_confusion_matrix"] = final_confusion_matrix
    # Save final conf matrix
    final_folder = f"{self.output.folder}"
    os.makedirs(final_folder, exist_ok=True)
    disp = ConfusionMatrixDisplay(
        confusion_matrix=np.array(final_confusion_matrix),
        display_labels=[x.replace("pred:", "") for x in final_confusion_matrix.columns.to_list()],
    )
    disp.plot(include_values=True, cmap=plt.cm.Greens, ax=None, colorbar=False, xticks_rotation=90)
    plt.title(f"Confusion Matrix (Accuracy: {(self.metadata['test_accuracy'][count] * 100):.2f}%)")
    plt.savefig(os.path.join(final_folder, "test_confusion_matrix.png"), bbox_inches="tight", pad_inches=0, dpi=300)
    plt.close()

prepare()

Prepare the experiment.

Source code in quadra/tasks/classification.py
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def prepare(self) -> None:
    """Prepare the experiment."""
    self.datamodule = self.config.datamodule

    self.backbone = self.config.backbone

    self.model = self.config.model
    # prepare_data() must be explicitly called if the task does not include a lightining training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="fit")

    self.train_dataloader_list = list(self.datamodule.train_dataloader())
    self.test_dataloader_list = list(self.datamodule.val_dataloader())
    self.trainer = self.config.trainer

test()

Skip test phase.

Source code in quadra/tasks/classification.py
621
622
def test(self) -> None:
    """Skip test phase."""

test_full_data()

Test model trained on full dataset.

Source code in quadra/tasks/classification.py
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
@typing.no_type_check
def test_full_data(self) -> None:
    """Test model trained on full dataset."""
    self.config.datamodule.class_to_idx = self.datamodule.full_dataset.class_to_idx
    self.config.datamodule.phase = "test"
    idx_to_class = self.datamodule.full_dataset.idx_to_class
    self.datamodule.setup("test")
    test_dataloader = self.datamodule.test_dataloader()

    if len(self.datamodule.data["samples"]) == 0:
        log.info("No test data, skipping test")
        return

    _, pd_cm, accuracy, res, _ = self.trainer.test(
        test_dataloader=test_dataloader, idx_to_class=idx_to_class, predict_proba=True
    )

    output_folder_test = "test"

    os.makedirs(output_folder_test, exist_ok=True)

    save_classification_result(
        results=res,
        output_folder=output_folder_test,
        confmat=pd_cm,
        accuracy=accuracy,
        test_dataloader=test_dataloader,
        config=self.config,
        output=self.output,
    )

train()

Train the model.

Source code in quadra/tasks/classification.py
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
@typing.no_type_check
def train(self) -> None:
    """Train the model."""
    log.info("Starting training...!")
    all_features = None
    all_labels = None

    class_to_keep = None

    if hasattr(self.datamodule, "class_to_keep_training") and self.datamodule.class_to_keep_training is not None:
        class_to_keep = self.datamodule.class_to_keep_training

    if hasattr(self.datamodule, "cache") and self.datamodule.cache:
        if self.config.trainer.iteration_over_training != 1:
            raise AttributeError("Cache is only supported when iteration over training is set to 1")

        full_dataloader = self.datamodule.full_dataloader()
        all_features, all_labels, _ = get_feature(
            feature_extractor=self.backbone, dl=full_dataloader, iteration_over_training=1
        )

        sorted_indices = np.argsort(full_dataloader.dataset.x)
        all_features = all_features[sorted_indices]
        all_labels = all_labels[sorted_indices]

    # cycle over all train/test split
    for train_dataloader, test_dataloader in zip(self.train_dataloader_list, self.test_dataloader_list):
        # Reinit classifier
        self.model = self.config.model
        self.trainer.change_classifier(self.model)

        # Train on current training set
        if all_features is not None and all_labels is not None:
            # Find which are the indices used to pass from the sorted list of string to the disordered one
            sorted_indices = np.argsort(np.concatenate([train_dataloader.dataset.x, test_dataloader.dataset.x]))
            revese_sorted_indices = np.argsort(sorted_indices)

            # Use these indices to correctly match the extracted features with the new file order
            all_features_sorted = all_features[revese_sorted_indices]
            all_labels_sorted = all_labels[revese_sorted_indices]

            train_len = len(train_dataloader.dataset.x)

            self.trainer.fit(
                train_features=all_features_sorted[0:train_len], train_labels=all_labels_sorted[0:train_len]
            )

            _, pd_cm, accuracy, res, _ = self.trainer.test(
                test_dataloader=test_dataloader,
                test_features=all_features_sorted[train_len:],
                test_labels=all_labels_sorted[train_len:],
                class_to_keep=class_to_keep,
                idx_to_class=train_dataloader.dataset.idx_to_class,
                predict_proba=True,
            )
        else:
            self.trainer.fit(train_dataloader=train_dataloader)
            _, pd_cm, accuracy, res, _ = self.trainer.test(
                test_dataloader=test_dataloader,
                class_to_keep=class_to_keep,
                idx_to_class=train_dataloader.dataset.idx_to_class,
                predict_proba=True,
            )

        # save results
        self.metadata["test_confusion_matrix"].append(pd_cm)
        self.metadata["test_accuracy"].append(accuracy)
        self.metadata["test_results"].append(res)
        self.metadata["test_labels"].append(
            [
                train_dataloader.dataset.idx_to_class[i] if i != -1 else "N/A"
                for i in res["real_label"].unique().tolist()
            ]
        )

train_full_data()

Train the model on train + validation.

Source code in quadra/tasks/classification.py
613
614
615
616
617
618
619
def train_full_data(self):
    """Train the model on train + validation."""
    # Reinit classifier
    self.model = self.config.model
    self.trainer.change_classifier(self.model)

    self.trainer.fit(train_dataloader=self.datamodule.full_dataloader())

SklearnTestClassification(config, output, model_path, device, gradcam=False, **kwargs)

Bases: Evaluation[SklearnClassificationDataModuleT]

Perform a test using an imported SklearnClassification pytorch model.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • output (DictConfig) –

    where to save results

  • model_path (str) –

    path to trained model generated from SklearnClassification task.

  • device (str) –

    the device where to run the model (cuda or cpu)

  • gradcam (bool) –

    Whether to compute gradcams

Source code in quadra/tasks/classification.py
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
def __init__(
    self,  # pylint: disable=W0613
    config: DictConfig,
    output: DictConfig,
    model_path: str,
    device: str,
    gradcam: bool = False,
    **kwargs: Any,
):
    super().__init__(config=config, model_path=model_path, device=device)
    self.gradcam = gradcam
    self.output = output
    self._backbone: nn.Module
    self._classifier: ClassifierMixin
    self.class_to_idx: Dict[str, int]
    self.idx_to_class: Dict[int, str]
    self.test_dataloader: torch.utils.data.DataLoader
    self.metadata: Dict[str, Any] = {
        "test_confusion_matrix": None,
        "test_accuracy": None,
        "test_results": None,
        "test_labels": None,
        "cams": None,
    }

backbone: nn.Module property writable

classifier: ClassifierMixin property writable

deployment_model property writable

Deployment model.

trainer: SklearnClassificationTrainer property writable

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/classification.py
912
913
914
915
916
917
918
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.test()
    if self.output.report:
        self.generate_report()
    self.finalize()

generate_report()

Generate a report for the task.

Source code in quadra/tasks/classification.py
897
898
899
900
901
902
903
904
905
906
907
908
909
910
def generate_report(self) -> None:
    """Generate a report for the task."""
    log.info("Generating report!")
    os.makedirs(self.output.folder, exist_ok=True)
    save_classification_result(
        results=self.metadata["test_results"],
        output_folder=self.output.folder,
        confmat=self.metadata["test_confusion_matrix"],
        accuracy=self.metadata["test_accuracy"],
        test_dataloader=self.test_dataloader,
        config=self.config,
        output=self.output,
        grayscale_cams=self.metadata["cams"],
    )

prepare()

Prepare the experiment.

Source code in quadra/tasks/classification.py
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
def prepare(self) -> None:
    """Prepare the experiment."""
    super().prepare()

    idx_to_class = {}
    class_to_idx = {}
    for k, v in self.model_data["classes"].items():
        idx_to_class[int(k)] = v
        class_to_idx[v] = int(k)

    self.idx_to_class = idx_to_class
    self.class_to_idx = class_to_idx

    self.config.datamodule.class_to_idx = class_to_idx

    self.datamodule = self.config.datamodule
    # prepare_data() must be explicitly called because there is no lightning training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="test")

    self.test_dataloader = self.datamodule.test_dataloader()

    # Configure trainer
    self.trainer = self.config.trainer

test()

Run the test.

Source code in quadra/tasks/classification.py
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
def test(self) -> None:
    """Run the test."""
    _, pd_cm, accuracy, res, cams = self.trainer.test(
        test_dataloader=self.test_dataloader,
        idx_to_class=self.idx_to_class,
        predict_proba=True,
        gradcam=self.gradcam,
    )

    # save results
    self.metadata["test_confusion_matrix"] = pd_cm
    self.metadata["test_accuracy"] = accuracy
    self.metadata["test_results"] = res
    self.metadata["test_labels"] = [
        self.idx_to_class[i] if i != -1 else "N/A" for i in res["real_label"].unique().tolist()
    ]
    self.metadata["cams"] = cams

Task(config, export_config=None)

Bases: Generic[DataModuleT]

Base Experiment Task.

Parameters:

  • config (DictConfig) –

    The experiment configuration.

  • export_config (Optional[DictConfig]) –

    Dictionary containing the export configuration, it should contain the following keys:

    • types: List of types to export.
    • input_shapes: Optional list of input shapes to use, they must be in the same order of the forward arguments.
Source code in quadra/tasks/base.py
40
41
42
43
44
45
46
def __init__(self, config: DictConfig, export_config: Optional[DictConfig] = None):
    self.config = config
    self.export_config = export_config
    self.export_folder: str = "deployment_model"
    self._datamodule: DataModuleT
    self.metadata: Dict[str, Any]
    self.save_config()

datamodule: DataModuleT property writable

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/base.py
90
91
92
93
94
95
96
97
98
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.train()
    self.test()
    if self.export_config is not None and len(self.export_config.types) > 0:
        self.export()
    self.generate_report()
    self.finalize()

export()

Export model for production.

Source code in quadra/tasks/base.py
78
79
80
def export(self) -> None:
    """Export model for production."""
    log.info("Export model for production not implemented for this task!")

finalize()

Finalize the experiment.

Source code in quadra/tasks/base.py
86
87
88
def finalize(self) -> None:
    """Finalize the experiment."""
    log.info("Results are saved in %s", os.getcwd())

generate_report()

Generate a report.

Source code in quadra/tasks/base.py
82
83
84
def generate_report(self) -> None:
    """Generate a report."""
    log.info("Report generation not implemented for this task!")

prepare()

Prepare the experiment.

Source code in quadra/tasks/base.py
54
55
56
def prepare(self) -> None:
    """Prepare the experiment."""
    self.datamodule = self.config.datamodule

save_config()

Save the experiment configuration when running an Hydra experiment.

Source code in quadra/tasks/base.py
48
49
50
51
52
def save_config(self) -> None:
    """Save the experiment configuration when running an Hydra experiment."""
    if HydraConfig.initialized():
        with open("config_resolved.yaml", "w") as fp:
            OmegaConf.save(config=OmegaConf.to_container(self.config, resolve=True), f=fp.name)

test()

Test the model.

Source code in quadra/tasks/base.py
74
75
76
def test(self) -> Any:
    """Test the model."""
    log.info("Testing not implemented for this task!")

train()

Train the model.

Source code in quadra/tasks/base.py
70
71
72
def train(self) -> Any:
    """Train the model."""
    log.info("Training not implemented for this task!")