classification
ClassificationDataset(samples, targets, class_to_idx=None, resize=None, roi=None, transform=None, rgb=True, channel=3, random_padding=False, circular_crop=False)
¶
Bases: ImageClassificationListDataset
Custom Classification Dataset.
Parameters:
-
samples
(
List[str]
) –List of paths to images
-
targets
(
List[Union[str, int]]
) –List of targets
-
class_to_idx
(
Optional[Dict]
, default:None
) –Defaults to None.
-
resize
(
Optional[int]
, default:None
) –Resize image to this size. Defaults to None.
-
roi
(
Optional[Tuple[int, int, int, int]]
, default:None
) –Region of interest. Defaults to None.
-
transform
(
Optional[Callable]
, default:None
) –transform function. Defaults to None.
-
rgb
(
bool
, default:True
) –Use RGB space
-
channel
(
int
, default:3
) –Number of channels. Defaults to 3.
-
random_padding
(
bool
, default:False
) –Random padding. Defaults to False.
-
circular_crop
(
bool
, default:False
) –Circular crop. Defaults to False.
Source code in quadra/datasets/classification.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
ImageClassificationListDataset(samples, targets, class_to_idx=None, resize=None, roi=None, transform=None, rgb=True, channel=3, allow_missing_label=False)
¶
Bases: Dataset
Standard classification dataset.
Parameters:
-
samples
(
List[str]
) –List of paths to images to be read
-
targets
(
List[Union[str, int]]
) –List of labels, one for every image in samples
-
class_to_idx
(
Optional[Dict]
, default:None
) –mapping from classes to unique indexes. Defaults to None.
-
resize
(
Optional[int]
, default:None
) –Integer specifying the size of a first optional resize keeping the aspect ratio: the smaller side of the image will be resized to
resize
, while the longer will be resized keeping the aspect ratio. Defaults to None. -
roi
(
Optional[Tuple[int, int, int, int]]
, default:None
) –Optional ROI, with (x_upper_left, y_upper_left, x_bottom_right, y_bottom_right). Defaults to None.
-
transform
(
Optional[Callable]
, default:None
) –Optional Albumentations transform. Defaults to None.
-
rgb
(
bool
, default:True
) –if False, image will be converted in grayscale
-
channel
(
int
, default:3
) –1 or 3. If rgb is True, then channel will be set at 3.
-
allow_missing_label
(
Optional[bool]
, default:False
) –If set to false warn the user if the dataset contains missing labels
Source code in quadra/datasets/classification.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
MultilabelClassificationDataset(samples, targets, class_to_idx=None, transform=None, rgb=True)
¶
Bases: Dataset
Custom MultilabelClassification Dataset.
Parameters:
-
samples
(
List[str]
) –list of paths to images.
-
targets
(
ndarray
) –array of multiple targets per sample. The array must be a one-hot enoding. It must have a shape of (n_samples, n_targets).
-
class_to_idx
(
Optional[Dict]
, default:None
) –Defaults to None.
-
transform
(
Optional[Callable]
, default:None
) –transform function. Defaults to None.
-
rgb
(
bool
, default:True
) –Use RGB space
Source code in quadra/datasets/classification.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|