segmentation
SegmentationDatasetArguments
dataclass
¶
Segmentation dataset arguments.
Parameters:
-
train_samples
(
List[int]
) –List of samples per class in train set, element at index 0 are good samples
-
val_samples
(
Optional[List[int]]
, default:None
) –List of samples per class in validation set, same as above.
-
test_samples
(
Optional[List[int]]
, default:None
) –List of samples per class in test set, same as above.
-
classes
(
Optional[List[str]]
, default:None
) –Optional list of class names, must be equal to len(train_samples) - 1
base_binary_segmentation_dataset(tmp_path, request)
¶
Generate a base binary segmentation dataset with the following structure
- 10 good and 10 bad samples in train set
- 10 good and 10 bad samples in validation set
- 10 good and 10 bad samples in test set
- 2 classes: good and bad.
Parameters:
Yields:
-
Tuple[str, SegmentationDatasetArguments, Dict[str, int]]
–Tuple containing path to dataset, dataset arguments and class to index mapping
Source code in quadra/utils/tests/fixtures/dataset/segmentation.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
base_multiclass_segmentation_dataset(tmp_path, request)
¶
Generate a base binary segmentation dataset with the following structure
- 10 good, 15 defect_1 and 20 defect_2 samples in train set
- 5 good, 10 defect_1 and 15 defect_2 samples in validation set
- 10 good, 10 defect_1 and 10 defect_2 samples in test set
- 3 classes: good, defect_1 and defect_2.
Parameters:
Yields:
-
Tuple[str, SegmentationDatasetArguments, Dict[str, int]]
–Tuple containing path to dataset, dataset arguments and class to index mapping
Source code in quadra/utils/tests/fixtures/dataset/segmentation.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
segmentation_dataset(tmp_path, dataset_arguments)
¶
Fixture to dinamically generate a segmentation dataset. By default generated images are 224x224 pixels and associated masks contains a 50x50 pixels square with the corresponding image class, so at the current stage is not possible to have images with multiple annotations. Split files are saved as train.txt, val.txt and test.txt.
Parameters:
-
tmp_path
(
Path
) –path to temporary directory
-
dataset_arguments
(
SegmentationDatasetArguments
) –dataset arguments
Yields:
-
Tuple[str, SegmentationDatasetArguments, Dict[str, int]]
–Tuple containing path to dataset, dataset arguments and class to index mapping
Source code in quadra/utils/tests/fixtures/dataset/segmentation.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|