patch
PatchSklearnClassificationTrainDataset(data_path, samples, targets, class_to_idx=None, resize=None, transform=None, rgb=True, channel=3, balance_classes=False)
¶
Bases: Dataset
Dataset used for patch sampling, it expects samples to be paths to h5 files containing all the required information for patch sampling from images.
Parameters:
-
data_path
(
str
) –base path to the dataset
-
samples
(
List[str]
) –Paths to h5 files
-
targets
(
List[Union[str, int]]
) –Labels associated with each sample
-
class_to_idx
(
Optional[Dict]
, default:None
) –Mapping between class and corresponding index
-
resize
(
Optional[int]
, default:None
) –Whether to perform an aspect ratio resize of the patch before the transformations
-
transform
(
Optional[Callable]
, default:None
) –Optional function applied to the image
-
rgb
(
bool
, default:True
) –if False, image will be converted in grayscale
-
channel
(
int
, default:3
) –1 or 3. If rgb is True, then channel will be set at 3.
-
balance_classes
(
bool
, default:False
) –if True, the dataset will be balanced by duplicating samples of the minority class
Source code in quadra/datasets/patch.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|