Skip to content

patch

PatchSklearnClassification(config, output, device, automatic_batch_size)

Bases: Task[PatchSklearnClassificationDataModule]

Patch classification using torch backbone for feature extraction and sklearn to learn a linear classifier.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • device (str) –

    The device to use

  • output (DictConfig) –

    Dictionary defining which kind of outputs to generate. Defaults to None.

  • automatic_batch_size (DictConfig) –

    Whether to automatically find the largest batch size that fits in memory.

Source code in quadra/tasks/patch.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    device: str,
    automatic_batch_size: DictConfig,
):
    super().__init__(config=config)
    self.device: str = device
    self.output: DictConfig = output
    self.return_polygon: bool = True
    self.reconstruction_results: Dict[str, Any]
    self._backbone: ModelSignatureWrapper
    self._trainer: SklearnClassificationTrainer
    self._model: ClassifierMixin
    self.metadata: Dict[str, Any] = {
        "test_confusion_matrix": [],
        "test_accuracy": [],
        "test_results": [],
        "test_labels": [],
    }
    self.export_folder: str = "deployment_model"
    self.automatic_batch_size = automatic_batch_size

backbone: ModelSignatureWrapper property writable

model: ClassifierMixin property writable

sklearn.base.ClassifierMixin: The model.

trainer: SklearnClassificationTrainer property writable

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/patch.py
257
258
259
260
261
262
263
264
265
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.train()
    if self.output.report:
        self.generate_report()
    if self.config.export is not None and len(self.config.export.types) > 0:
        self.export()
    self.finalize()

export()

Generate deployment model for the task.

Source code in quadra/tasks/patch.py
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def export(self) -> None:
    """Generate deployment model for the task."""
    input_shapes = self.config.export.input_shapes

    idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    model_json, export_paths = export_model(
        config=self.config,
        model=self.backbone,
        export_folder=self.export_folder,
        half_precision=False,
        input_shapes=input_shapes,
        idx_to_class=idx_to_class,
        pytorch_model_type="backbone",
    )

    if len(export_paths) > 0:
        dataset_info = self.datamodule.info

        horizontal_patches = dataset_info.patch_number[1] if dataset_info.patch_number is not None else None
        vertical_patches = dataset_info.patch_number[0] if dataset_info.patch_number is not None else None
        patch_height = dataset_info.patch_size[0] if dataset_info.patch_size is not None else None
        patch_width = dataset_info.patch_size[1] if dataset_info.patch_size is not None else None
        overlap = dataset_info.overlap

        model_json.update(
            {
                "horizontal_patches": horizontal_patches,
                "vertical_patches": vertical_patches,
                "patch_height": patch_height,
                "patch_width": patch_width,
                "overlap": overlap,
                "reconstruction_method": self.output.reconstruction_method,
                "class_to_skip": self.datamodule.class_to_skip_training,
            }
        )

        with open(os.path.join(self.export_folder, "model.json"), "w") as f:
            json.dump(model_json, f, cls=utils.HydraEncoder)

    dump(self.model, os.path.join(self.export_folder, "classifier.joblib"))

generate_report()

Generate the report for the task.

Source code in quadra/tasks/patch.py
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def generate_report(self) -> None:
    """Generate the report for the task."""
    log.info("Generating report!")
    os.makedirs(self.output.folder, exist_ok=True)

    c_matrix = self.metadata["test_confusion_matrix"]
    idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    datamodule: PatchSklearnClassificationDataModule = self.datamodule
    val_img_info: List[PatchDatasetFileFormat] = datamodule.info.val_files
    for img_info in val_img_info:
        if not os.path.isabs(img_info.image_path):
            img_info.image_path = os.path.join(datamodule.data_path, img_info.image_path)
        if img_info.mask_path is not None and not os.path.isabs(img_info.mask_path):
            img_info.mask_path = os.path.join(datamodule.data_path, img_info.mask_path)

    false_region_bad, false_region_good, true_region_bad, reconstructions = compute_patch_metrics(
        test_img_info=val_img_info,
        test_results=self.metadata["test_results"],
        patch_num_h=datamodule.info.patch_number[0] if datamodule.info.patch_number is not None else None,
        patch_num_w=datamodule.info.patch_number[1] if datamodule.info.patch_number is not None else None,
        patch_h=datamodule.info.patch_size[0] if datamodule.info.patch_size is not None else None,
        patch_w=datamodule.info.patch_size[1] if datamodule.info.patch_size is not None else None,
        overlap=datamodule.info.overlap,
        idx_to_class=idx_to_class,
        return_polygon=self.return_polygon,
        patch_reconstruction_method=self.output.reconstruction_method,
        annotated_good=datamodule.info.annotated_good,
    )

    self.reconstruction_results = {
        "false_region_bad": false_region_bad,
        "false_region_good": false_region_good,
        "true_region_bad": true_region_bad,
        "reconstructions": reconstructions,
        "reconstructions_type": "polygon" if self.return_polygon else "rle",
        "patch_reconstruction_method": self.output.reconstruction_method,
    }

    with open("reconstruction_results.json", "w") as f:
        json.dump(
            self.reconstruction_results,
            f,
            cls=RleEncoder,
        )

    if hasattr(self.datamodule, "class_to_skip_training") and self.datamodule.class_to_skip_training is not None:
        ignore_classes = [self.datamodule.class_to_idx[x] for x in self.datamodule.class_to_skip_training]
    else:
        ignore_classes = None
    val_dataloader = self.datamodule.val_dataloader()
    save_classification_result(
        results=self.metadata["test_results"],
        output_folder=self.output.folder,
        confusion_matrix=c_matrix,
        accuracy=self.metadata["test_accuracy"],
        test_dataloader=val_dataloader,
        config=self.config,
        output=self.output,
        reconstructions=reconstructions,
        ignore_classes=ignore_classes,
    )

prepare()

Prepare the experiment.

Source code in quadra/tasks/patch.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def prepare(self) -> None:
    """Prepare the experiment."""
    self.datamodule = self.config.datamodule
    self.backbone = self.config.backbone
    self.model = self.config.model

    if not self.automatic_batch_size.disable and self.device != "cpu":
        self.datamodule.batch_size = automatic_batch_size_computation(
            datamodule=self.datamodule,
            backbone=self.backbone,
            starting_batch_size=self.automatic_batch_size.starting_batch_size,
        )

    self.trainer = self.config.trainer

train()

Train the model.

Source code in quadra/tasks/patch.py
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def train(self) -> None:
    """Train the model."""
    log.info("Starting training...!")
    # prepare_data() must be explicitly called if the task does not include a lightining training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="fit")
    class_to_keep = None
    if hasattr(self.datamodule, "class_to_skip_training") and self.datamodule.class_to_skip_training is not None:
        class_to_keep = [
            x for x in self.datamodule.class_to_idx.keys() if x not in self.datamodule.class_to_skip_training
        ]

    self.model = self.config.model
    self.trainer.change_classifier(self.model)
    train_dataloader = self.datamodule.train_dataloader()
    val_dataloader = self.datamodule.val_dataloader()
    train_dataset = cast(PatchSklearnClassificationTrainDataset, train_dataloader.dataset)
    self.trainer.fit(train_dataloader=train_dataloader)
    _, pd_cm, accuracy, res, _ = self.trainer.test(
        test_dataloader=val_dataloader,
        class_to_keep=class_to_keep,
        idx_to_class=train_dataset.idx_to_class,
        predict_proba=True,
    )

    # save results
    self.metadata["test_confusion_matrix"] = pd_cm
    self.metadata["test_accuracy"] = accuracy
    self.metadata["test_results"] = res
    self.metadata["test_labels"] = [
        train_dataset.idx_to_class[i] if i != -1 else "N/A" for i in res["real_label"].unique().tolist()
    ]

PatchSklearnTestClassification(config, output, model_path, device='cpu')

Bases: Evaluation[PatchSklearnClassificationDataModule]

Perform a test of an already trained classification model.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • output (DictConfig) –

    where to save resultss

  • model_path (str) –

    path to trained model from PatchSklearnClassification task.

  • device (str, default: 'cpu' ) –

    the device where to run the model (cuda or cpu). Defaults to 'cpu'.

Source code in quadra/tasks/patch.py
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def __init__(
    self,
    config: DictConfig,
    output: DictConfig,
    model_path: str,
    device: str = "cpu",
):
    super().__init__(config=config, model_path=model_path, device=device)
    self.output = output
    self._backbone: BaseEvaluationModel
    self._classifier: ClassifierMixin
    self.class_to_idx: Dict[str, int]
    self.idx_to_class: Dict[int, str]
    self.metadata: Dict[str, Any] = {
        "test_confusion_matrix": None,
        "test_accuracy": None,
        "test_results": None,
        "test_labels": None,
    }
    self.class_to_skip: List[str] = []
    self.reconstruction_results: Dict[str, Any]
    self.return_polygon: bool = True

backbone: BaseEvaluationModel property writable

classifier: ClassifierMixin property writable

deployment_model property writable

Deployment model.

trainer: SklearnClassificationTrainer property writable

execute()

Execute the experiment and all the steps.

Source code in quadra/tasks/patch.py
479
480
481
482
483
484
485
def execute(self) -> None:
    """Execute the experiment and all the steps."""
    self.prepare()
    self.test()
    if self.output.report:
        self.generate_report()
    self.finalize()

generate_report()

Generate a report for the task.

Source code in quadra/tasks/patch.py
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
def generate_report(self) -> None:
    """Generate a report for the task."""
    log.info("Generating report!")
    os.makedirs(self.output.folder, exist_ok=True)

    c_matrix = self.metadata["test_confusion_matrix"]
    idx_to_class = {v: k for k, v in self.datamodule.class_to_idx.items()}

    datamodule: PatchSklearnClassificationDataModule = self.datamodule
    test_img_info = datamodule.info.test_files
    for img_info in test_img_info:
        if not os.path.isabs(img_info.image_path):
            img_info.image_path = os.path.join(datamodule.data_path, img_info.image_path)
        if img_info.mask_path is not None and not os.path.isabs(img_info.mask_path):
            img_info.mask_path = os.path.join(datamodule.data_path, img_info.mask_path)

    false_region_bad, false_region_good, true_region_bad, reconstructions = compute_patch_metrics(
        test_img_info=test_img_info,
        test_results=self.metadata["test_results"],
        patch_num_h=datamodule.info.patch_number[0] if datamodule.info.patch_number is not None else None,
        patch_num_w=datamodule.info.patch_number[1] if datamodule.info.patch_number is not None else None,
        patch_h=datamodule.info.patch_size[0] if datamodule.info.patch_size is not None else None,
        patch_w=datamodule.info.patch_size[1] if datamodule.info.patch_size is not None else None,
        overlap=datamodule.info.overlap,
        idx_to_class=idx_to_class,
        return_polygon=self.return_polygon,
        patch_reconstruction_method=self.output.reconstruction_method,
        annotated_good=datamodule.info.annotated_good,
    )

    self.reconstruction_results = {
        "false_region_bad": false_region_bad,
        "false_region_good": false_region_good,
        "true_region_bad": true_region_bad,
        "reconstructions": reconstructions,
        "reconstructions_type": "polygon" if self.return_polygon else "rle",
        "patch_reconstruction_method": self.output.reconstruction_method,
    }

    with open("reconstruction_results.json", "w") as f:
        json.dump(
            self.reconstruction_results,
            f,
            cls=RleEncoder,
        )

    if self.class_to_skip is not None:
        ignore_classes = [datamodule.class_to_idx[x] for x in self.class_to_skip]
    else:
        ignore_classes = None
    test_dataloader = self.datamodule.test_dataloader()
    save_classification_result(
        results=self.metadata["test_results"],
        output_folder=self.output.folder,
        confusion_matrix=c_matrix,
        accuracy=self.metadata["test_accuracy"],
        test_dataloader=test_dataloader,
        config=self.config,
        output=self.output,
        reconstructions=reconstructions,
        ignore_classes=ignore_classes,
    )

prepare()

Prepare the experiment.

Source code in quadra/tasks/patch.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
def prepare(self) -> None:
    """Prepare the experiment."""
    super().prepare()

    idx_to_class = {}
    class_to_idx = {}
    for k, v in self.model_data["classes"].items():
        idx_to_class[int(k)] = v
        class_to_idx[v] = int(k)

    self.idx_to_class = idx_to_class
    self.class_to_idx = class_to_idx
    self.config.datamodule.class_to_idx = class_to_idx

    self.datamodule = self.config.datamodule
    # Configure trainer
    self.trainer = self.config.trainer

    # prepare_data() must be explicitly called because there is no lightning training
    self.datamodule.prepare_data()
    self.datamodule.setup(stage="test")

test()

Run the test.

Source code in quadra/tasks/patch.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
@automatic_datamodule_batch_size(batch_size_attribute_name="batch_size")
def test(self) -> None:
    """Run the test."""
    test_dataloader = self.datamodule.test_dataloader()

    self.class_to_skip = self.model_data["class_to_skip"] if hasattr(self.model_data, "class_to_skip") else None
    class_to_keep = None

    if self.class_to_skip is not None:
        class_to_keep = [x for x in self.datamodule.class_to_idx.keys() if x not in self.class_to_skip]
    _, pd_cm, accuracy, res, _ = self.trainer.test(
        test_dataloader=test_dataloader,
        idx_to_class=self.idx_to_class,
        predict_proba=True,
        class_to_keep=class_to_keep,
    )

    # save results
    self.metadata["test_confusion_matrix"] = pd_cm
    self.metadata["test_accuracy"] = accuracy
    self.metadata["test_results"] = res
    self.metadata["test_labels"] = [
        self.idx_to_class[i] if i != -1 else "N/A" for i in res["real_label"].unique().tolist()
    ]