Skip to content

classification

ClassificationDataset(samples, targets, class_to_idx=None, resize=None, roi=None, transform=None, rgb=True, channel=3, random_padding=False, circular_crop=False)

Bases: ImageClassificationListDataset

Custom Classification Dataset.

Parameters:

  • samples (List[str]) –

    List of paths to images

  • targets (List[Union[str, int]]) –

    List of targets

  • class_to_idx (Optional[Dict], default: None ) –

    Defaults to None.

  • resize (Optional[int], default: None ) –

    Resize image to this size. Defaults to None.

  • roi (Optional[Tuple[int, int, int, int]], default: None ) –

    Region of interest. Defaults to None.

  • transform (Optional[Callable], default: None ) –

    transform function. Defaults to None.

  • rgb (bool, default: True ) –

    Use RGB space

  • channel (int, default: 3 ) –

    Number of channels. Defaults to 3.

  • random_padding (bool, default: False ) –

    Random padding. Defaults to False.

  • circular_crop (bool, default: False ) –

    Circular crop. Defaults to False.

Source code in quadra/datasets/classification.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def __init__(
    self,
    samples: List[str],
    targets: List[Union[str, int]],
    class_to_idx: Optional[Dict] = None,
    resize: Optional[int] = None,
    roi: Optional[Tuple[int, int, int, int]] = None,
    transform: Optional[Callable] = None,
    rgb: bool = True,
    channel: int = 3,
    random_padding: bool = False,
    circular_crop: bool = False,
):
    super().__init__(samples, targets, class_to_idx, resize, roi, transform, rgb, channel)
    if transform is None:
        self.transform = None

    self.random_padding = random_padding
    self.circular_crop = circular_crop

ImageClassificationListDataset(samples, targets, class_to_idx=None, resize=None, roi=None, transform=None, rgb=True, channel=3, allow_missing_label=False)

Bases: Dataset

Standard classification dataset.

Parameters:

  • samples (List[str]) –

    List of paths to images to be read

  • targets (List[Union[str, int]]) –

    List of labels, one for every image in samples

  • class_to_idx (Optional[Dict], default: None ) –

    mapping from classes to unique indexes. Defaults to None.

  • resize (Optional[int], default: None ) –

    Integer specifying the size of a first optional resize keeping the aspect ratio: the smaller side of the image will be resized to resize, while the longer will be resized keeping the aspect ratio. Defaults to None.

  • roi (Optional[Tuple[int, int, int, int]], default: None ) –

    Optional ROI, with (x_upper_left, y_upper_left, x_bottom_right, y_bottom_right). Defaults to None.

  • transform (Optional[Callable], default: None ) –

    Optional Albumentations transform. Defaults to None.

  • rgb (bool, default: True ) –

    if False, image will be converted in grayscale

  • channel (int, default: 3 ) –

    1 or 3. If rgb is True, then channel will be set at 3.

  • allow_missing_label (Optional[bool], default: False ) –

    If set to false warn the user if the dataset contains missing labels

Source code in quadra/datasets/classification.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def __init__(
    self,
    samples: List[str],
    targets: List[Union[str, int]],
    class_to_idx: Optional[Dict] = None,
    resize: Optional[int] = None,
    roi: Optional[Tuple[int, int, int, int]] = None,
    transform: Optional[Callable] = None,
    rgb: bool = True,
    channel: int = 3,
    allow_missing_label: Optional[bool] = False,
):
    super().__init__()
    assert len(samples) == len(
        targets
    ), f"Samples ({len(samples)}) and targets ({len(targets)}) must have the same length"
    # Setting the ROI
    self.roi = roi

    # Keep-Aspect-Ratio resize
    self.resize = resize

    if not allow_missing_label and None in targets:
        warnings.warn(
            (
                "Dataset contains empty targets but allow_missing_label is set to False, "
                "be careful because None labels will not work inside Dataloaders"
            ),
            UserWarning,
        )

    targets = [-1 if target is None else target for target in targets]
    # Data
    self.x = np.array(samples)
    self.y = np.array(targets)

    if class_to_idx is None:
        unique_targets = np.unique(targets)
        class_to_idx = {c: i for i, c in enumerate(unique_targets)}

    self.class_to_idx = class_to_idx
    self.idx_to_class = {v: k for k, v in class_to_idx.items()}
    self.samples = [
        (path, self.class_to_idx[self.y[i]] if (self.y[i] != -1 and self.y[i] != "-1") else -1)
        for i, path in enumerate(self.x)
    ]

    self.rgb = rgb
    self.channel = 3 if rgb else channel

    self.transform = transform

MultilabelClassificationDataset(samples, targets, class_to_idx=None, transform=None, rgb=True)

Bases: Dataset

Custom MultilabelClassification Dataset.

Parameters:

  • samples (List[str]) –

    list of paths to images.

  • targets (ndarray) –

    array of multiple targets per sample. The array must be a one-hot enoding. It must have a shape of (n_samples, n_targets).

  • class_to_idx (Optional[Dict], default: None ) –

    Defaults to None.

  • transform (Optional[Callable], default: None ) –

    transform function. Defaults to None.

  • rgb (bool, default: True ) –

    Use RGB space

Source code in quadra/datasets/classification.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def __init__(
    self,
    samples: List[str],
    targets: np.ndarray,
    class_to_idx: Optional[Dict] = None,
    transform: Optional[Callable] = None,
    rgb: bool = True,
):
    super().__init__()
    assert len(samples) == len(
        targets
    ), f"Samples ({len(samples)}) and targets ({len(targets)}) must have the same length"

    # Data
    self.x = samples
    self.y = targets

    # Class to idx and the other way around
    if class_to_idx is None:
        unique_targets = targets.shape[1]
        class_to_idx = {c: i for i, c in enumerate(range(unique_targets))}
    self.class_to_idx = class_to_idx
    self.idx_to_class = {v: k for k, v in class_to_idx.items()}
    self.samples = list(zip(self.x, self.y))
    self.rgb = rgb
    self.transform = transform