Skip to content

segmentation

Segmentation(config, num_viz_samples=5, checkpoint_path=None, run_test=False, evaluate=None, report=False)

Bases: Generic[SegmentationDataModuleT], LightningTask[SegmentationDataModuleT]

Task for segmentation.

Parameters:

  • config (DictConfig) –

    Config object

  • num_viz_samples (int, default: 5 ) –

    Number of samples to visualize. Defaults to 5.

  • checkpoint_path (Optional[str], default: None ) –

    Path to the checkpoint to load the model from. Defaults to None.

  • run_test (bool, default: False ) –

    If True, run test after training. Defaults to False.

  • evaluate (Optional[DictConfig], default: None ) –

    Dict with evaluation parameters. Defaults to None.

  • report (bool, default: False ) –

    If True, create report after training. Defaults to False.

Source code in quadra/tasks/segmentation.py
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def __init__(
    self,
    config: DictConfig,
    num_viz_samples: int = 5,
    checkpoint_path: Optional[str] = None,
    run_test: bool = False,
    evaluate: Optional[DictConfig] = None,
    report: bool = False,
):
    super().__init__(
        config=config,
        checkpoint_path=checkpoint_path,
        run_test=run_test,
        report=report,
    )
    self.evaluate = evaluate
    self.num_viz_samples = num_viz_samples
    self.export_folder: str = "deployment_model"
    self.exported_model_path: Optional[str] = None
    if self.evaluate and any(self.evaluate.values()):
        if (
            self.config.export is None
            or len(self.config.export.types) == 0
            or "torchscript" not in self.config.export.types
        ):
            log.info(
                "Evaluation is enabled, but training does not export a deployment model. Automatically export the "
                "model as torchscript."
            )
            if self.config.export is None:
                self.config.export = DictConfig({"types": ["torchscript"]})
            else:
                self.config.export.types.append("torchscript")

        if not self.report:
            log.info("Evaluation is enabled, but reporting is disabled. Enabling reporting automatically.")
            self.report = True

module: SegmentationModel property writable

Get the module.

export()

Generate a deployment model for the task.

Source code in quadra/tasks/segmentation.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def export(self) -> None:
    """Generate a deployment model for the task."""
    log.info("Exporting model ready for deployment")

    # Get best model!
    if (
        self.trainer.checkpoint_callback is not None
        and hasattr(self.trainer.checkpoint_callback, "best_model_path")
        and self.trainer.checkpoint_callback.best_model_path is not None
        and len(self.trainer.checkpoint_callback.best_model_path) > 0
    ):
        best_model_path = self.trainer.checkpoint_callback.best_model_path
        log.info("Loaded best model from %s", best_model_path)

        module = self.module.__class__.load_from_checkpoint(
            best_model_path,
            model=self.module.model,
            loss_fun=None,
            optimizer=self.module.optimizer,
            lr_scheduler=self.module.schedulers,
        )
    else:
        log.warning("No checkpoint callback found in the trainer, exporting the last model weights")
        module = self.module

    if "idx_to_class" not in self.config.datamodule:
        log.info("No idx_to_class key")
        idx_to_class = {0: "good", 1: "bad"}  # TODO: Why is this the default value?
    else:
        log.info("idx_to_class is present")
        idx_to_class = self.config.datamodule.idx_to_class

    if self.config.export is None:
        raise ValueError(
            "No export type specified. This should not happen, please check if you have set "
            "the export_type or assign it to a default value."
        )

    half_precision = "16" in self.trainer.precision

    input_shapes = self.config.export.input_shapes

    model_json, export_paths = export_model(
        config=self.config,
        model=module.model,
        export_folder=self.export_folder,
        half_precision=half_precision,
        input_shapes=input_shapes,
        idx_to_class=idx_to_class,
    )

    if len(export_paths) == 0:
        return

    # Pick one model for evaluation, it should be independent of the export type as the model is wrapped
    self.exported_model_path = next(iter(export_paths.values()))

    with open(os.path.join(self.export_folder, "model.json"), "w") as f:
        json.dump(model_json, f, cls=utils.HydraEncoder)

generate_report()

Generate a report for the task.

Source code in quadra/tasks/segmentation.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def generate_report(self) -> None:
    """Generate a report for the task."""
    if self.evaluate is not None:
        log.info("Generating evaluation report!")
        eval_tasks: List[SegmentationEvaluation] = []
        if self.evaluate.analysis:
            if self.exported_model_path is None:
                raise ValueError(
                    "Exported model path is not set yet but the task tries to do an analysis evaluation"
                )
            eval_task = SegmentationAnalysisEvaluation(
                config=self.config,
                model_path=self.exported_model_path,
            )
            eval_tasks.append(eval_task)
        for task in eval_tasks:
            task.execute()

        if len(self.logger) > 0:
            mflow_logger = get_mlflow_logger(trainer=self.trainer)
            tensorboard_logger = utils.get_tensorboard_logger(trainer=self.trainer)

            if mflow_logger is not None and self.config.core.get("upload_artifacts"):
                for task in eval_tasks:
                    for file in task.metadata["report_files"]:
                        mflow_logger.experiment.log_artifact(
                            run_id=mflow_logger.run_id, local_path=file, artifact_path=task.report_path
                        )

            if tensorboard_logger is not None and self.config.core.get("upload_artifacts"):
                for task in eval_tasks:
                    for file in task.metadata["report_files"]:
                        ext = os.path.splitext(file)[1].lower()

                        if ext in [".png", ".jpg", ".jpeg", ".bmp", ".tiff", ".tif", ".gif"]:
                            try:
                                img = cv2.imread(file)
                                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                            except cv2.error:
                                log.info("Could not upload artifact image %s", file)
                                continue

                            tensorboard_logger.experiment.add_image(
                                os.path.basename(file), img, 0, dataformats="HWC"
                            )
                        else:
                            utils.upload_file_tensorboard(file, tensorboard_logger)

prepare()

Prepare the task.

Source code in quadra/tasks/segmentation.py
115
116
117
118
def prepare(self) -> None:
    """Prepare the task."""
    super().prepare()
    self.module = self.config.model

SegmentationAnalysisEvaluation(config, model_path, device=None)

Bases: SegmentationEvaluation

Segmentation Analysis Evaluation Task Args: config: The experiment configuration model_path: The model path. device: Device to use for evaluation. If None, the device is automatically determined.

Source code in quadra/tasks/segmentation.py
305
306
307
308
309
310
311
312
def __init__(
    self,
    config: DictConfig,
    model_path: str,
    device: Optional[str] = None,
):
    super().__init__(config=config, model_path=model_path, device=device)
    self.test_output: Dict[str, Any] = {}

generate_report()

Generate a report.

Source code in quadra/tasks/segmentation.py
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
def generate_report(self) -> None:
    """Generate a report."""
    log.info("Generating analysis report")

    for stage, output in self.test_output.items():
        image_mean = OmegaConf.to_container(self.config.transforms.mean)
        if not isinstance(image_mean, list) or any(not isinstance(x, (int, float)) for x in image_mean):
            raise ValueError("Image mean is not a list of float or integer values, please check your config")
        image_std = OmegaConf.to_container(self.config.transforms.std)
        if not isinstance(image_std, list) or any(not isinstance(x, (int, float)) for x in image_std):
            raise ValueError("Image std is not a list of float or integer values, please check your config")
        reports = create_mask_report(
            stage=stage,
            output=output,
            report_path="analysis_report",
            mean=image_mean,
            std=image_std,
            analysis=True,
            nb_samples=10,
            apply_sigmoid=True,
            show_orj_predictions=True,
        )
        self.metadata["report_files"].extend(reports)
        log.info("%s analysis report completed.", stage)

prepare()

Prepare the evaluation task.

Source code in quadra/tasks/segmentation.py
317
318
319
320
321
def prepare(self) -> None:
    """Prepare the evaluation task."""
    super().prepare()
    self.datamodule.setup(stage="fit")
    self.datamodule.setup(stage="test")

test()

Run testing.

Source code in quadra/tasks/segmentation.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
@automatic_datamodule_batch_size(batch_size_attribute_name="batch_size")
def test(self) -> None:
    """Run testing."""
    log.info("Starting inference for analysis.")

    stages: List[str] = []
    dataloaders: List[torch.utils.data.DataLoader] = []

    # if self.datamodule.train_dataset_available:
    #     stages.append("train")
    #     dataloaders.append(self.datamodule.train_dataloader())
    #     if self.datamodule.val_dataset_available:
    #         stages.append("val")
    #         dataloaders.append(self.datamodule.val_dataloader())

    if self.datamodule.test_dataset_available:
        stages.append("test")
        dataloaders.append(self.datamodule.test_dataloader())
    for stage, dataloader in zip(stages, dataloaders):
        log.info("Running inference on %s set with batch size: %d", stage, dataloader.batch_size)
        image_list, mask_list, mask_pred_list, label_list = [], [], [], []
        for batch in dataloader:
            images, masks, labels = batch
            images = images.to(self.device)
            # TODO: This can be problematic for the future considering bfloat16 or float16-true.
            if "16" in str(self.deployment_model.model_dtype):
                images = images.half()
            if len(masks.shape) == 3:  # BxHxW -> Bx1xHxW
                masks = masks.unsqueeze(1)
            with torch.no_grad():
                image_list.append(images)
                mask_list.append(masks)
                mask_pred_list.append(self.deployment_model(images.to(self.device)))
                label_list.append(labels)

        output = {
            "image": torch.cat(image_list, dim=0),
            "mask": torch.cat(mask_list, dim=0),
            "label": torch.cat(label_list, dim=0),
            "mask_pred": torch.cat(mask_pred_list, dim=0),
        }
        self.test_output[stage] = output

train()

Skip training.

Source code in quadra/tasks/segmentation.py
314
315
def train(self) -> None:
    """Skip training."""

SegmentationEvaluation(config, model_path, device='cpu')

Bases: Evaluation[SegmentationDataModuleT]

Segmentation Evaluation Task with deployment models.

Parameters:

  • config (DictConfig) –

    The experiment configuration

  • model_path (str) –

    The experiment path.

  • device (Optional[str], default: 'cpu' ) –

    Device to use for evaluation. If None, the device is automatically determined.

Raises:

  • ValueError

    If the model path is not provided

Source code in quadra/tasks/segmentation.py
241
242
243
244
245
246
247
248
def __init__(
    self,
    config: DictConfig,
    model_path: str,
    device: Optional[str] = "cpu",
):
    super().__init__(config=config, model_path=model_path, device=device)
    self.config = config

inference(dataloader, deployment_model, device)

Run inference on the dataloader and return the output.

Parameters:

  • dataloader (DataLoader) –

    The dataloader to run inference on

  • deployment_model (BaseEvaluationModel) –

    The deployment model to use

  • device (device) –

    The device to run inference on

Source code in quadra/tasks/segmentation.py
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
@torch.no_grad()
def inference(
    self, dataloader: DataLoader, deployment_model: BaseEvaluationModel, device: torch.device
) -> Dict[str, torch.Tensor]:
    """Run inference on the dataloader and return the output.

    Args:
        dataloader: The dataloader to run inference on
        deployment_model: The deployment model to use
        device: The device to run inference on
    """
    image_list, mask_list, mask_pred_list, label_list = [], [], [], []
    for batch in dataloader:
        images, masks, labels = batch
        images = images.to(device)
        masks = masks.to(device)
        labels = labels.to(device)
        image_list.append(images.cpu())
        mask_list.append(masks.cpu())
        mask_pred_list.append(deployment_model(images.to(device)).cpu())
        label_list.append(labels.cpu())
    output = {
        "image": torch.cat(image_list, dim=0),
        "mask": torch.cat(mask_list, dim=0),
        "label": torch.cat(label_list, dim=0),
        "mask_pred": torch.cat(mask_pred_list, dim=0),
    }
    return output

prepare()

Prepare the evaluation.

Source code in quadra/tasks/segmentation.py
253
254
255
256
257
258
259
260
261
262
263
264
265
def prepare(self) -> None:
    """Prepare the evaluation."""
    super().prepare()
    # TODO: Why we propagate mean and std only in Segmentation?
    self.config.transforms.mean = self.model_data["mean"]
    self.config.transforms.std = self.model_data["std"]
    # Setup datamodule
    if hasattr(self.config.datamodule, "idx_to_class"):
        idx_to_class = self.model_data["classes"]  # dict {index: class}
        self.config.datamodule.idx_to_class = idx_to_class
    self.datamodule = self.config.datamodule
    # prepare_data() must be explicitly called because there is no lightning training
    self.datamodule.prepare_data()

save_config()

Skip saving the config.

Source code in quadra/tasks/segmentation.py
250
251
def save_config(self) -> None:
    """Skip saving the config."""