export
export_model(config, model, export_folder, half_precision, input_shapes=None, idx_to_class=None, pytorch_model_type='model')
¶
Generate deployment models for the task.
Parameters:
-
config
(
DictConfig
) –Experiment config
-
model
(
Any
) –Model to be exported
-
export_folder
(
str
) –Path to save the exported model
-
half_precision
(
bool
) –Whether to use half precision for the exported model
-
input_shapes
(
Optional[List[Any]]
, default:None
) –Input shapes for the exported model
-
idx_to_class
(
Optional[Dict[int, str]]
, default:None
) –Mapping from class index to class name
-
pytorch_model_type
(
Literal['backbone', 'model']
, default:'model'
) –Type of the pytorch model config to be exported, if it's backbone on disk we will save the config.backbone config, otherwise we will save the config.model
Returns:
-
Dict[str, Any]
–If the model is exported successfully, return a dictionary containing information about the exported model and
-
Dict[str, str]
–a second dictionary containing the paths to the exported models. Otherwise, return two empty dictionaries.
Source code in quadra/utils/export.py
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
|
export_onnx_model(model, output_path, onnx_config, input_shapes=None, half_precision=False, model_name='model.onnx')
¶
Export a PyTorch model with ONNX.
Parameters:
-
model
(
Module
) –PyTorch model to be exported
-
output_path
(
str
) –Path to save the model
-
input_shapes
(
Optional[List[Any]]
, default:None
) –Input shapes for tracing
-
onnx_config
(
DictConfig
) –ONNX export configuration
-
half_precision
(
bool
, default:False
) –If True, the model will be exported with half precision
-
model_name
(
str
, default:'model.onnx'
) –Name of the exported model
Source code in quadra/utils/export.py
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
export_pytorch_model(model, output_path, model_name='model.pth')
¶
Export pytorch model's parameter dictionary using a deserialized state_dict.
Parameters:
-
model
(
Module
) –PyTorch model to be exported
-
output_path
(
str
) –Path to save the model
-
model_name
(
str
, default:'model.pth'
) –Name of the exported model
Returns:
-
str
–If the model is exported successfully, the path to the model is returned.
Source code in quadra/utils/export.py
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
|
export_torchscript_model(model, output_path, input_shapes=None, half_precision=False, model_name='model.pt')
¶
Export a PyTorch model with TorchScript.
Parameters:
-
model
(
Module
) –PyTorch model to be exported
-
input_shapes
(
Optional[List[Any]]
, default:None
) –Inputs shape for tracing
-
output_path
(
str
) –Path to save the model
-
half_precision
(
bool
, default:False
) –If True, the model will be exported with half precision
-
model_name
(
str
, default:'model.pt'
) –Name of the exported model
Returns:
-
Optional[Tuple[str, Any]]
–If the model is exported successfully, the path to the model and the input shape are returned.
Source code in quadra/utils/export.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
extract_torch_model_inputs(model, input_shapes=None, half_precision=False, batch_size=1)
¶
Extract the input shapes for the given model and generate a list of torch tensors with the given device and dtype.
Parameters:
-
model
(
Union[Module, ModelSignatureWrapper]
) –Module or ModelSignatureWrapper
-
input_shapes
(
Optional[List[Any]]
, default:None
) –Inputs shapes
-
half_precision
(
bool
, default:False
) –If True, the model will be exported with half precision
-
batch_size
(
int
, default:1
) –Batch size for the input shapes
Source code in quadra/utils/export.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
|
generate_torch_inputs(input_shapes, device, half_precision=False, dtype=torch.float32, batch_size=1)
¶
Given a list of input shapes that can contain either lists, tuples or dicts, with tuples being the input shapes of the model, generate a list of torch tensors with the given device and dtype.
Source code in quadra/utils/export.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|
get_export_extension(export_type)
¶
Get the extension of the exported model.
Parameters:
-
export_type
(
str
) –The type of the exported model.
Returns:
-
str
–The extension of the exported model.
Source code in quadra/utils/export.py
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
|
import_deployment_model(model_path, inference_config, device, model_architecture=None)
¶
Try to import a model for deployment, currently only supports torchscript .pt files and state dictionaries .pth files.
Parameters:
-
model_path
(
str
) –Path to the model
-
inference_config
(
DictConfig
) –Inference configuration, should contain keys for the different deployment models
-
device
(
str
) –Device to load the model on
-
model_architecture
(
Optional[Module]
, default:None
) –Optional model architecture to use for loading a plain pytorch model
Returns:
-
BaseEvaluationModel
–A tuple containing the model and the model type
Source code in quadra/utils/export.py
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
|