lightning
            BatchSizeFinder(find_train_batch_size=True, find_validation_batch_size=False, find_test_batch_size=False, find_predict_batch_size=False, mode='power', steps_per_trial=3, init_val=2, max_trials=25, batch_arg_name='batch_size')
¶
  
            Bases: BatchSizeFinder
Batch size finder setting the proper model training status as the current one from lightning seems bugged. It also allows to skip some batch size finding steps.
Parameters:
- 
        find_train_batch_size
            (
bool, default:True) –Whether to find the training batch size.
 - 
        find_validation_batch_size
            (
bool, default:False) –Whether to find the validation batch size.
 - 
        find_test_batch_size
            (
bool, default:False) –Whether to find the test batch size.
 - 
        find_predict_batch_size
            (
bool, default:False) –Whether to find the predict batch size.
 - 
        mode
            (
str, default:'power') –The mode to use for batch size finding. See
pytorch_lightning.callbacks.BatchSizeFinderfor more details. - 
        steps_per_trial
            (
int, default:3) –The number of steps per trial. See
pytorch_lightning.callbacks.BatchSizeFinderfor more details. - 
        init_val
            (
int, default:2) –The initial value for batch size. See
pytorch_lightning.callbacks.BatchSizeFinderfor more details. - 
        max_trials
            (
int, default:25) –The maximum number of trials. See
pytorch_lightning.callbacks.BatchSizeFinderfor more details. - 
        batch_arg_name
            (
str, default:'batch_size') –The name of the batch size argument. See
pytorch_lightning.callbacks.BatchSizeFinderfor more details. 
Source code in quadra/callbacks/lightning.py
                426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442  |  | 
          scale_batch_size(trainer, pl_module)
¶
  Scale the batch size.
Source code in quadra/callbacks/lightning.py
            488 489 490 491 492 493 494 495 496 497 498 499 500 501  |  | 
            LightningTrainerBaseSetup(log_every_n_steps=1)
¶
  
            Bases: Callback
Custom callback used to setup a lightning trainer with default options.
Parameters:
- 
        log_every_n_steps
            (
int, default:1) –Default value for trainer.log_every_n_steps if the dataloader is too small.
 
Source code in quadra/callbacks/lightning.py
                384 385  |  | 
          on_fit_start(trainer, pl_module)
¶
  Called on every stage.
Source code in quadra/callbacks/lightning.py
            387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404  |  | 
          __scale_batch_dump_params(trainer)
¶
  Dump the parameters that need to be reset after the batch size finder..
Source code in quadra/callbacks/lightning.py
            98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117  |  | 
          __scale_batch_reset_params(trainer, steps_per_trial)
¶
  Reset the parameters that need to be reset after the batch size finder.
Source code in quadra/callbacks/lightning.py
            120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137  |  | 
          __scale_batch_restore_params(trainer, params)
¶
  Restore the parameters that need to be reset after the batch size finder.
Source code in quadra/callbacks/lightning.py
            140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164  |  |