common
BYOLPredictionHead(input_dim, hidden_dim, output_dim)
¶
Bases: ProjectionHead
Prediction head used for BYOL.
Source code in quadra/modules/ssl/common.py
171 172 173 174 175 176 177 178 179 180 181 |
|
BYOLProjectionHead(input_dim, hidden_dim, output_dim)
¶
Bases: ProjectionHead
Projection head used for BYOL.
Source code in quadra/modules/ssl/common.py
187 188 189 190 191 192 193 194 195 196 197 |
|
BarlowTwinsProjectionHead(input_dim, hidden_dim, output_dim)
¶
Bases: ProjectionHead
Projection head used for Barlow Twins. "The projector network has three linear layers, each with 8192 output units. The first two layers of the projector are followed by a batch normalization layer and rectified linear units." https://arxiv.org/abs/2103.03230.
Source code in quadra/modules/ssl/common.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
DinoProjectionHead(input_dim, output_dim, hidden_dim, use_bn=False, norm_last_layer=True, num_layers=3, bottleneck_dim=256)
¶
Projection head used for Dino. This projection head does not have a batch norm layer.
Parameters:
-
input_dim
(
int
) –Input dimension for MLP head.
-
output_dim
(
int
) –Output dimension (projection dimension) for MLP head.
-
hidden_dim
(
int
) –Hidden dimension. Defaults to 512.
-
bottleneck_dim
(
int
) –Bottleneck dimension. Defaults to 256.
-
num_layers
(
int
) –Number of hidden layers used in MLP. Defaults to 3.
-
norm_last_layer
(
bool
) –Decides applying normalization before last layer. Defaults to False.
Source code in quadra/modules/ssl/common.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
ExpanderReducer(input_dim, hidden_dim, output_dim)
¶
Bases: ProjectionHead
Expander followed by a reducer.
Source code in quadra/modules/ssl/common.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
MultiCropModel(backbone, head)
¶
MultiCrop model for DINO augmentation.
It takes 2 global crops and N (possible) local crops as a single tensor.
Parameters:
Source code in quadra/modules/ssl/common.py
271 272 273 274 |
|
ProjectionHead(blocks)
¶
Base class for all projection and prediction heads.
Parameters:
-
blocks
(
List[Tuple[Optional[torch.nn.Module], ...]]
) –List of tuples, each denoting one block of the projection head MLP. Each tuple reads (linear_layer, batch_norm_layer, non_linearity_layer).
batch_norm
layer can be possibly None, the same happens fornon_linearity_layer
.
Source code in quadra/modules/ssl/common.py
20 21 22 23 24 25 26 27 28 29 30 31 |
|
SimCLRPredictionHead(input_dim, hidden_dim, output_dim)
¶
Bases: ProjectionHead
Prediction head used for SimCLR. "We set g(h) = W(2)σ(W(1)h), with the same input and output dimensionality (i.e. 2048)." https://arxiv.org/abs/2002.05709.
Source code in quadra/modules/ssl/common.py
107 108 109 110 111 112 113 114 115 116 117 |
|
SimCLRProjectionHead(input_dim, hidden_dim, output_dim)
¶
Bases: ProjectionHead
Projection head used for SimCLR. "We use a MLP with one hidden layer to obtain zi = g(h) = W_2 * σ(W_1 * h) where σ is a ReLU non-linearity." https://arxiv.org/abs/2002.05709.
Source code in quadra/modules/ssl/common.py
88 89 90 91 92 93 94 95 96 97 98 |
|
SimSiamPredictionHead(input_dim, hidden_dim, output_dim)
¶
Bases: ProjectionHead
Prediction head used for SimSiam. "The prediction MLP (h) has BN applied to its hidden fc layers. Its output fc does not have BN (...) or ReLU. This MLP has 2 layers." https://arxiv.org/abs/2011.10566.
Source code in quadra/modules/ssl/common.py
155 156 157 158 159 160 161 162 163 164 165 |
|
SimSiamProjectionHead(input_dim, hidden_dim, output_dim)
¶
Bases: ProjectionHead
Projection head used for SimSiam. "The projection MLP (in f) has BN applied to each fully-connected (fc) layer, including its output fc. Its output fc has no ReLU. The hidden fc is 2048-d. This MLP has 3 layers." https://arxiv.org/abs/2011.10566.
Source code in quadra/modules/ssl/common.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|