classification
ClassificationDatasetArguments
dataclass
¶
ClassificationMultilabelDatasetArguments
dataclass
¶
Classification dataset arguments.
Parameters:
-
samples
(
List[int]
) –number of samples per class
-
classes
(
Optional[List[str]]
) –class names, if set it must be the same length as samples
-
val_size
(
Optional[float]
) –validation set size
-
test_size
(
Optional[float]
) –test set size
-
percentage_other_classes
(
Optional[float]
) –probability of adding other classes to the labels of each sample
ClassificationPatchDatasetArguments
dataclass
¶
Classification patch dataset arguments.
Parameters:
-
samples
(
List[int]
) –number of samples per class
-
overlap
(
float
) –overlap between patches
-
patch_size
(
Optional[Tuple[int, int]]
) –patch size
-
patch_number
(
Optional[Tuple[int, int]]
) –number of patches
-
classes
(
Optional[List[str]]
) –class names, if set it must be the same length as samples
-
val_size
(
Optional[float]
) –validation set size
-
test_size
(
Optional[float]
) –test set size
-
annotated_good
(
Optional[List[str]]
) –list of class names that are considered as good annotations (E.g. ["good"])
base_classification_dataset(tmp_path, request)
¶
Generate base classification dataset with the following parameters
- 10 samples per class
- 2 classes (class_1 and class_2) By default generated images are grayscale and 10x10 pixels.
Parameters:
Yields:
-
Tuple[str, ClassificationDatasetArguments]
–Tuple containing path to created dataset and dataset arguments
Source code in quadra/utils/tests/fixtures/dataset/classification.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
base_multilabel_classification_dataset(tmp_path, request)
¶
Fixture to generate base multilabel classification dataset with the following parameters
- 10 samples per class
- 3 classes (class_1, class_2 and class_3)
- 10% of samples in validation set
- 10% of samples in test set
- 30% of possibility to add each other class to the sample By default generated images are grayscale and 10x10 pixels.
Parameters:
Yields:
-
Tuple[str, ClassificationMultilabelDatasetArguments]
–Tuple containing path to created dataset and dataset arguments
Source code in quadra/utils/tests/fixtures/dataset/classification.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
|
base_patch_classification_dataset(tmp_path, request)
¶
Generate a classification patch dataset with the following parameters
- 3 classes named bg, a and b
- 15, 20 and 25 samples for each class
- patch size of 16x20
- 60% overlap
- 10% validation set
- 10% test set.
Parameters:
Source code in quadra/utils/tests/fixtures/dataset/classification.py
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
|
classification_dataset(tmp_path, dataset_arguments)
¶
Generate classification dataset. If val_size or test_size are set, it will generate a train.txt, val.txt and test.txt file in the dataset directory. By default generated images are 10x10 pixels.
Parameters:
-
tmp_path
(
Path
) –path to temporary directory
-
dataset_arguments
(
ClassificationDatasetArguments
) –dataset arguments
Yields:
-
Tuple[str, ClassificationDatasetArguments]
–Tuple containing path to created dataset and dataset arguments
Source code in quadra/utils/tests/fixtures/dataset/classification.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
classification_patch_dataset(tmp_path, dataset_arguments)
¶
Fixture to dinamically generate a classification patch dataset.
By default generated images are 224x224 pixels
and associated masks contains a 50x50 pixels square with the corresponding image class, so at the current stage
is not possible to have images with multiple annotations. The patch dataset will be generated using the standard
parameters of generate_patch_dataset function.
Parameters:
-
tmp_path
(
Path
) –path to temporary directory
-
dataset_arguments
(
ClassificationDatasetArguments
) –dataset arguments
Yields:
-
Tuple[str, ClassificationDatasetArguments, Dict[str, int]]
–Tuple containing path to created dataset, dataset arguments and class to index mapping
Source code in quadra/utils/tests/fixtures/dataset/classification.py
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
|
multilabel_classification_dataset(tmp_path, dataset_arguments)
¶
Fixture to dinamically generate a multilabel classification dataset. Generates a samples.txt file in the dataset directory containing the path to the image and the corresponding classes. If val_size or test_size are set, it will generate a train.txt, val.txt and test.txt file in the dataset directory. By default generated images are 10x10 pixels.
Parameters:
-
tmp_path
(
Path
) –path to temporary directory
-
dataset_arguments
(
ClassificationMultilabelDatasetArguments
) –dataset arguments
Returns:
-
Tuple[str, ClassificationMultilabelDatasetArguments]
–Tuple containing path to created dataset and dataset arguments
Source code in quadra/utils/tests/fixtures/dataset/classification.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
|