metrics
compute_patch_metrics(test_img_info, test_results, overlap, idx_to_class, patch_num_h=None, patch_num_w=None, patch_w=None, patch_h=None, return_polygon=False, patch_reconstruction_method='priority', annotated_good=None)
¶
Compute the metrics of a patch dataset.
Parameters:
-
test_img_info
(
List[PatchDatasetFileFormat]
) –List of observation paths and mask paths
-
test_results
(
pd.DataFrame
) –Pandas dataframe containing the results of an SklearnClassificationTrainer utility
-
patch_num_h
(
Optional[int]
) –Number of vertical patches (required if patch_w and patch_h are None)
-
patch_num_w
(
Optional[int]
) –Number of horizontal patches (required if patch_w and patch_h are None)
-
patch_h
(
Optional[int]
) –Patch height (required if patch_num_h and patch_num_w are None)
-
patch_w
(
Optional[int]
) –Patch width (required if patch_num_h and patch_num_w are None)
-
overlap
(
float
) –Percentage of overlap between the patches
-
idx_to_class
(
Dict
) –Dict mapping an index to the corresponding class name
-
return_polygon
(
bool
) –if set to true convert the reconstructed mask into polygons, otherwise return the mask
-
patch_reconstruction_method
(
str
) –How to compute the label of overlapping patches, can either be: priority: Assign the top priority label (i.e the one with greater index) to overlapping regions major_voting: Assign the most present label among the patches label overlapping a pixel
-
annotated_good
(
Optional[List[int]]
) –List of indices of annotations to be treated as good.
Returns:
-
Tuple[int, int, int, List[Dict]]
–Tuple containing: false_region_bad: Number of false bad regions detected in the dataset false_region_good: Number of missed defects true_region_bad: Number of correctly identified defects reconstructions: If polygon is true this is a List of dict containing { "file_path": image_path, "mask_path": mask_path, "file_name": observation_name, "prediction": [{ "label": predicted_label, "points": List of dict coordinates "x" and "y" representing the points of a polygon that surrounds an image area covered by patches of label = predicted_label }] } else its a list of dict containing { "file_path": image_path, "mask_path": mask_path, "file_name": observation_name, "prediction": numpy array containing the reconstructed mask }
Source code in quadra/utils/patch/metrics.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
from_mask_to_polygon(mask_img)
¶
Convert a mask of pattern to a list of polygon vertices.
Parameters:
Returns:
-
list
–a list of lists containing the coordinates of the polygons containing each region of the mask:
-
list
–[ [ { "x": 1.1, "y": 2.2 }, { "x": 2.1, "y": 3.2 } ], ...
-
list
–].
Source code in quadra/utils/patch/metrics.py
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
|
get_sorted_patches_by_image(test_results, img_name)
¶
Gets the patches of a given image sorted by patch number.
Parameters:
-
test_results
(
pd.DataFrame
) –Pandas dataframe containing test results like the one produced by SklearnClassificationTrainer
-
img_name
(
str
) –name of the image used to filter the results.
Returns:
-
pd.DataFrame
–test results filtered by image name and sorted by patch number
Source code in quadra/utils/patch/metrics.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
reconstruct_patch(input_img_shape, patch_size, pred, patch_num_h, patch_num_w, idx_to_class, step, return_polygon=True, method='priority')
¶
Reconstructs the prediction image from the patches.
Parameters:
-
input_img_shape
(
Tuple[int, ...]
) –The size of the reconstructed image
-
patch_size
(
Tuple[int, int]
) –Array defining the patch size
-
pred
(
np.ndarray
) –Numpy array containing reconstructed prediction (patch_num_h x patch_num_w)
-
patch_num_h
(
int
) –Number of vertical patches
-
patch_num_w
(
int
) –Number of horizontal patches
-
idx_to_class
(
Dict
) –Dictionary mapping indices to labels
-
step
(
Tuple[int, int]
) –Array defining the step size to be used for reconstruction
-
return_polygon
(
bool
) –If true compute predicted polygons. Defaults to True.
-
method
(
str
) –Reconstruction method to be used. Currently supported: "priority" and "major_voting"
Returns:
-
Tuple[np.ndarray, List[Dict]]
–(reconstructed_prediction_image, predictions) where predictions is an array of objects [{ "label": Predicted_label, "points": List of dict coordinates "x" and "y" representing the points of a polygon that surrounds an image area covered by patches of label = predicted_label }]
Source code in quadra/utils/patch/metrics.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|