dataset
InvalidNumWorkersNumberException
¶
Bases: Exception
Exception raised when an invalid number of workers is passed to a function.
InvalidParameterCombinationException
¶
Bases: Exception
Exception raised when an invalid combination of parameters is passed to a function.
PatchDatasetFileFormat
dataclass
¶
Model representing the content of the patch dataset split_files field in the info.json file.
PatchDatasetInfo
dataclass
¶
Model representing the content of the patch dataset info.json file.
__save_patch_dataset(image_patches, labelled_patches=None, mask_patches=None, labelled_mask=None, output_folder='extraction_data', image_name='example', area_threshold=0.45, area_defect_threshold=0.2, mask_extension='_mask', save_mask=False, mask_output_folder=None, class_to_idx=None)
¶
Given a view_as_window computed patches, masks and labelled mask, save all the images in subdirectory divided by name and position in the grid, ambiguous patches i.e. the one that contains defects but with not enough to go above defined thresholds are marked as #DISCARD# and should be discarded in training. Patches of images without ground truth are saved inside the None folder.
Parameters:
-
image_patches
(
ndarray
) –[n, m, patch_w, patch_h, channel] numpy array of the image patches
-
mask_patches
(
ndarray | None
, default:None
) –[n, m, patch_w, patch_h] numpy array of mask patches
-
labelled_patches
(
ndarray | None
, default:None
) –[n, m, patch_w, patch_h] numpy array of labelled mask patch
-
labelled_mask
(
ndarray | None
, default:None
) –numpy array in which each defect in the image is labelled using connected components
-
class_to_idx
(
dict | None
, default:None
) –Dictionary with the mapping {"class" -> class in mask}, it must cover all indices contained in the masks
-
save_mask
(
bool
, default:False
) –flag to save or ignore mask
-
output_folder
(
str
, default:'extraction_data'
) –folder where to save data
-
mask_extension
(
str
, default:'_mask'
) –postfix of the saved mask based on the image name
-
mask_output_folder
(
str | None
, default:None
) –Optional folder in which to save the masks
-
image_name
(
str
, default:'example'
) –name to use in order to save the data
-
area_threshold
(
float
, default:0.45
) –minimum percentage of defected patch area present in the mask to classify the patch as defect
-
area_defect_threshold
(
float
, default:0.2
) –minimum percentage of single defect present in the patch to classify the patch as defect
Returns:
-
None
–None
Source code in quadra/utils/patch/dataset.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
|
compute_patch_info(img_h, img_w, patch_num_h, patch_num_w, overlap=0.0)
¶
Compute the patch size and step size given the number of patches and the overlap.
Parameters:
-
img_h
(
int
) –height of the image
-
img_w
(
int
) –width of the image
-
patch_num_h
(
int
) –number of vertical patches
-
patch_num_w
(
int
) –number of horizontal patches
-
overlap
(
float
, default:0.0
) –percentage of overlap between patches.
Returns:
-
tuple[tuple[int, int], tuple[int, int]]
–Tuple containing: patch_size: [size_y, size_x] Dimension of the patch step_size: [step_y, step_x] Step size
Source code in quadra/utils/patch/dataset.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
compute_patch_info_from_patch_dim(img_h, img_w, patch_height, patch_width, overlap=0.0)
¶
Compute patch info given the patch dimension Args: img_h: height of the image img_w: width of the image patch_height: patch height patch_width: patch width overlap: overlap percentage [0, 1].
Returns:
Source code in quadra/utils/patch/dataset.py
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
compute_safe_patch_range(sampled_point, patch_size, image_size)
¶
Computes the safe patch size for the given image size.
Parameters:
-
sampled_point
(
int
) –the sampled point
-
patch_size
(
int
) –the size of the patch
-
image_size
(
int
) –the size of the image.
Returns:
-
int
–Tuple containing the safe patch range [left, right] such that
-
int
–[sampled_point - left : sampled_point + right] will be within the image size.
Source code in quadra/utils/patch/dataset.py
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 |
|
create_h5(data_dictionary, idx_to_class, overlap, repeat_good_images, balance_defects, output_folder, labelled_masks_path, sampling_dataset_folder, annotated_good=None, patch_size=None, patch_number=None)
¶
Create h5 files for each image in the dataset.
Parameters:
-
data_dictionary
(
list[dict[Any, Any]]
) –Dictionary containing image and mask mapping
-
idx_to_class
(
dict
) –Dict mapping an index to the corresponding class name
-
overlap
(
float
) –Percentage of overlap between patches
-
repeat_good_images
(
int
) –Number of repetition for images with emtpy or None mask
-
balance_defects
(
bool
) –If true add one good entry for each defect extracted
-
output_folder
(
str
) –root folder
-
overlap
(
float
) –Percentage of overlap between patches
-
annotated_good
(
list[int] | None
, default:None
) –List of class indices that are considered good other than the background
-
labelled_masks_path
(
str
) –paths of labelled masks
-
sampling_dataset_folder
(
str
) –folder of the dataset
-
patch_size
(
tuple[int, int] | None
, default:None
) –Dimension of the patch, required if patch_number is None
-
patch_number
(
tuple[int, int] | None
, default:None
) –Number of patches for each side, required if patch_size is None.
Returns:
Source code in quadra/utils/patch/dataset.py
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 |
|
extract_patches(image, patch_number, patch_size, step, overlap)
¶
From an image extract N x M Patch[h, w] if the image is not perfectly divided by the number of patches of given dimension the last patch will contain a replica of the original image taken in range [-img_h:, :] or [:, -img_w:].
Parameters:
-
image
(
ndarray
) –Numpy array of the image
-
patch_number
(
tuple[int, ...]
) –number of patches to be extracted
-
patch_size
(
tuple[int, ...]
) –dimension of the patch
-
step
(
tuple[int, ...]
) –step of the patch extraction
-
overlap
(
float
) –horizontal and vertical patch overlapping in range [0, 1]
Returns:
-
ndarray
–Patches [N, M, 1, image_w, image_h, image_c]
Source code in quadra/utils/patch/dataset.py
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 |
|
from_rgb_to_idx(img, class_to_color, class_to_idx)
¶
Parameters:
-
img
(
ndarray
) –Rgb mask in which each different color is associated with a class
-
class_to_color
(
dict
) –Dict "key": [R, G, B]
-
class_to_idx
(
dict
) –Dict "key": class_idx.
Returns:
-
ndarray
–Grayscale mask in which each class is associated with a specific index
Source code in quadra/utils/patch/dataset.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
|
generate_patch_dataset(data_dictionary, class_to_idx, val_size=0.3, test_size=0.0, seed=42, patch_number=None, patch_size=None, overlap=0.0, output_folder='extraction_data', save_original_images_and_masks=True, area_threshold=0.45, area_defect_threshold=0.2, mask_extension='_mask', mask_output_folder=None, save_mask=False, clear_output_folder=False, mask_preprocessing=None, train_filename='dataset.txt', repeat_good_images=1, balance_defects=True, annotated_good=None, num_workers=1)
¶
Giving a data_dictionary as:
{ 'base_name': '163931_1_5.jpg', 'path': 'extraction_data/1/163931_1_5.jpg', 'mask': 'extraction_data/1/163931_1_5_mask.jpg' } This function will generate patches datasets based on the defined split number, one for training, one for validation and one for testing respectively under output_folder/train, output_folder/val and output_folder/test, the training dataset will contain h5 files and a txt file resulting from a call to the generate_classification_patch_train_dataset, while the test dataset will contain patches saved on disk divided in subfolders per class, patch extraction is done in a sliding window fashion. Original images and masks (preprocessed if mask_preprocessing is present) will also be saved under output_folder/original/images and output_folder/original/masks. If patch number is specified the patch size will be calculated accordingly, if the image is not divisible by the patch number two possible behaviours can occur: - if the patch reconstruction is smaller than the original image a new patch will be generated containing the pixels from the edge of the image (E.g the new patch will contain the last patch_size pixels of the original image) - if the patch reconstruction is bigger than the original image the last patch will contain the pixels from the edge of the image same as above, but without adding a new patch to the count.
Parameters:
-
data_dictionary
(
list[dict]
) –Dictionary as above
-
val_size
(
float
, default:0.3
) –percentage of the dictionary entries to be used for validation
-
test_size
(
float
, default:0.0
) –percentage of the dictionary entries to be used for testing
-
seed
(
int
, default:42
) –seed for rng based operations
-
clear_output_folder
(
bool
, default:False
) –flag used to delete all the data in subfolder
-
class_to_idx
(
dict
) –Dictionary {"defect": value in mask.. }
-
output_folder
(
str
, default:'extraction_data'
) –root_folder where to extract the data
-
save_original_images_and_masks
(
bool
, default:True
) –If True, images and masks will be copied inside output_folder/original/
-
area_threshold
(
float
, default:0.45
) –Minimum percentage of defected patch area present in the mask to classify the patch as defect
-
area_defect_threshold
(
float
, default:0.2
) –Minimum percentage of single defect present in the patch to classify the patch as defect
-
mask_extension
(
str
, default:'_mask'
) –Extension used to assign image to mask
-
mask_output_folder
(
str | None
, default:None
) –Optional folder in which to save the masks
-
save_mask
(
bool
, default:False
) –Flag to save the mask
-
patch_number
(
tuple[int, int] | None
, default:None
) –Optional number of patches for each side, required if patch_size is None
-
patch_size
(
tuple[int, int] | None
, default:None
) –Optional dimension of the patch, required if patch_number is None
-
overlap
(
float
, default:0.0
) –Overlap of the patches [0, 1]
-
mask_preprocessing
(
Callable | None
, default:None
) –Optional function applied to masks, this can be useful for example to convert an image in range [0-255] to the required [0-1]
-
train_filename
(
str
, default:'dataset.txt'
) –Name of the file containing mapping between h5 files and labels for training
-
repeat_good_images
(
int
, default:1
) –Number of repetition for images with emtpy or None mask
-
balance_defects
(
bool
, default:True
) –If true add one good entry for each defect extracted
-
annotated_good
(
list[str] | None
, default:None
) –List of labels that are annotated but considered as good
-
num_workers
(
int
, default:1
) –Number of workers used for the h5 creation
Returns:
-
dict | None
–None if data_dictionary is empty, otherwise return a dictionary containing informations about the dataset
Source code in quadra/utils/patch/dataset.py
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
|
generate_patch_sampling_dataset(data_dictionary, output_folder, idx_to_class, overlap, repeat_good_images=1, balance_defects=True, patch_number=None, patch_size=None, subfolder_name='train', train_filename='dataset.txt', annotated_good=None, num_workers=1)
¶
Generate a dataset of patches.
Parameters:
-
data_dictionary
(
list[dict[Any, Any]]
) –Dictionary containing image and mask mapping
-
output_folder
(
str
) –root folder
-
idx_to_class
(
dict
) –Dict mapping an index to the corresponding class name
-
repeat_good_images
(
int
, default:1
) –Number of repetition for images with emtpy or None mask
-
balance_defects
(
bool
, default:True
) –If true add one good entry for each defect extracted
-
patch_number
(
tuple[int, int] | None
, default:None
) –Optional number of patches for each side, required if patch_size is None
-
patch_size
(
tuple[int, int] | None
, default:None
) –Optional dimension of the patch, required if patch_number is None
-
overlap
(
float
) –Percentage of overlap between patches
-
subfolder_name
(
str
, default:'train'
) –name of the subfolder where to store h5 files for defected images and dataset txt
-
train_filename
(
str
, default:'dataset.txt'
) –Name of the file in which to store the mappings between h5 files and labels
-
annotated_good
(
list[int] | None
, default:None
) –List of class indices that are considered good other than the background
-
num_workers
(
int
, default:1
) –Number of processes used to create h5 files.
Returns:
-
None
–Create a txt file containing tuples path,label where path is a pointer to the generated h5 file and label is the corresponding label
Each generated h5 file contains five fields: img_path: Pointer to the location of the original image mask_path: Optional pointer to the mask file, is missing if the mask is completely empty or is not present patch_size: dimension of the patches on the interested image triangles: List of triangles that covers the defect triangles_weights: Which weight should be given to each triangle for sampling
Source code in quadra/utils/patch/dataset.py
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 |
|
generate_patch_sliding_window_dataset(data_dictionary, subfolder_name, patch_number=None, patch_size=None, overlap=0.0, output_folder='extraction_data', area_threshold=0.45, area_defect_threshold=0.2, mask_extension='_mask', mask_output_folder=None, save_mask=False, class_to_idx=None)
¶
Giving a data_dictionary as:
{ 'base_name': '163931_1_5.jpg', 'path': 'extraction_data/1/163931_1_5.jpg', 'mask': 'extraction_data/1/163931_1_5_mask.jpg' } This function will extract the patches and save the file and the mask in subdirectory Args: data_dictionary: Dictionary as above subfolder_name: Name of the subfolder where to save the extracted patches (output_folder/subfolder_name) class_to_idx: Dictionary {"defect": value in mask.. } output_folder: root_folder where to extract the data area_threshold: minimum percentage of defected patch area present in the mask to classify the patch as defect area_defect_threshold: minimum percentage of single defect present in the patch to classify the patch as defect mask_extension: extension used to assign image to mask mask_output_folder: Optional folder in which to save the masks save_mask: flag to save the mask patch_number: Optional number of patches for each side, required if patch_size is None patch_size: Optional dimension of the patch, required if patch_number is None overlap: overlap of the patches [0, 1].
Returns:
-
None
–None.
Source code in quadra/utils/patch/dataset.py
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
|
get_image_mask_association(data_folder, mask_folder=None, mask_extension='', warning_on_missing_mask=True)
¶
Function used to match images and mask from a folder or sub-folders.
Parameters:
-
data_folder
(
str
) –root data folder containing images or images and masks
-
mask_folder
(
str | None
, default:None
) –Optional root directory used to search only the masks
-
mask_extension
(
str
, default:''
) –extension used to identify the mask file, it's mandatory if mask_folder is not specified warning_on_missing_mask: if set to True a warning will be raised if a mask is missing, disable if you know that many images do not have a mask.
-
warning_on_missing_mask
(
bool
, default:True
) –if set to True a warning will be raised if a mask is missing, disable if you know
Returns:
-
list[dict]
–List of dict like:
-
list[dict]
–[
-
list[dict]
–{ 'base_name': '161927.tiff', 'path': 'test_dataset_patch/images/161927.tiff', 'mask': 'test_dataset_patch/masks/161927_mask.tiff'
-
list[dict]
–}, ...
-
list[dict]
–]
Source code in quadra/utils/patch/dataset.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
|
load_train_file(train_file_path, include_filter=None, exclude_filter=None, class_to_skip=None)
¶
Load a train file and return a list of samples and a list of targets. It is expected that train files will be in the same location as the train_file_path.
Parameters:
-
train_file_path
(
str
) –Training file location
-
include_filter
(
list[str] | None
, default:None
) –Include only samples that contain one of the element of this list
-
exclude_filter
(
list[str] | None
, default:None
) –Exclude all samples that contain one of the element of this list
-
class_to_skip
(
list | None
, default:None
) –if not None, exlude all the samples with labels present in this list.
Returns:
Source code in quadra/utils/patch/dataset.py
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 |
|
multilabel_stratification(output_folder, data_dictionary, num_classes, val_size, test_size)
¶
Split data dictionary using multilabel based stratification, place every sample with None mask inside the test set,for all the others read the labels contained in the masks to create one-hot encoded labels.
Parameters:
-
output_folder
(
str
) –root folder of the dataset
-
data_dictionary
(
list[dict]
) –Data dictionary as described in generate patch dataset
-
num_classes
(
int
) –Number of classes contained in the dataset, required for one hot encoding
-
val_size
(
float
) –Percentage of data to be used for validation
-
test_size
(
float
) –Percentage of data to be used for test
Source code in quadra/utils/patch/dataset.py
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
|
triangle_area(triangle)
¶
Compute the area of a triangle defined by 3 points.
Parameters:
-
triangle
(
ndarray
) –Array of shape 3x2 containing the coordinates of a triangle.
Returns:
-
float
–The area of the triangle
Source code in quadra/utils/patch/dataset.py
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 |
|
triangulate_region(mask)
¶
Extract from a binary image containing a single roi (with or without holes) a list of triangles (and their normalized area) that completely subdivide an approximated polygon defined around mask contours, the output can be used to easily sample uniformly points that are almost guarantee to lie inside the roi.
Parameters:
-
mask
(
ndimage
) –Binary image defining a region of interest
Returns:
-
tuple[ndarray | None, ndarray | None]
–Tuple containing: triangles: a numpy array containing a list of list of vertices (y, x) of the triangles defined over a polygon that contains the entire region weights: areas of each triangle rescaled (area_i / sum(areas))
Source code in quadra/utils/patch/dataset.py
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 |
|
trisample(triangle)
¶
Sample a point uniformly in a triangle.
Parameters:
-
triangle
(
ndarray
) –Array of shape 3x2 containing the coordinates of a triangle.
Returns:
Source code in quadra/utils/patch/dataset.py
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 |
|